Cardiology Guidelines

<table>
<thead>
<tr>
<th>Approved By:</th>
<th>Cardiology Board (RRCV CMG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Original Approval:</td>
<td>November 12th 2015</td>
</tr>
<tr>
<td>Trust Reference:</td>
<td>C268/2016</td>
</tr>
<tr>
<td>Version:</td>
<td>9</td>
</tr>
<tr>
<td>Supersedes:</td>
<td>Cardiology Guidelines 2018</td>
</tr>
<tr>
<td>Trust Lead:</td>
<td>Dr Ian Hudson</td>
</tr>
<tr>
<td>Board Director Lead:</td>
<td>Suzanne Khalid</td>
</tr>
<tr>
<td>Date of Latest Approval</td>
<td>August 2022 Director of CMG</td>
</tr>
<tr>
<td>Next Review Date:</td>
<td>November 2024</td>
</tr>
</tbody>
</table>
1. Introduction and Who Guideline applies to
This guideline is intended to assist staff in the management of the common cardiac conditions likely to be encountered in an acute hospital setting.

2. Guideline Standards and Procedures
This guideline is based on the recommendations of National Cardiac Societies, NICE guidance and local best practice as recommended by senior cardiology consultants.

3. Education and Training
None.

4. Supporting References
References are no longer entered but guidelines can be referenced from the links.

5. Key Words
Cardiology, STEMI, NSTEMI, atrial fibrillation, heart failure, arrhythmias, valvular heart disease, cardiac.

<table>
<thead>
<tr>
<th>CONTACT AND REVIEW DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guideline Lead (Name and Title)</td>
</tr>
<tr>
<td>Dr Ian Hudson (Consultant Cardiologist)</td>
</tr>
</tbody>
</table>

Details of Changes made during review:
Various sections updated and brought into line with standardised UHL format. All web links verified as safe and valid.
CONTENTS

CONTENTS ...3
ACKNOWLEDGEMENTS ...12
DISCLAIMER ..13
USEFUL LINKS ..14
CCU ISSUES ..21
JUNIORS ISSUES ..23
REGISTRAR ISSUES ...25
OUTPATIENT CONSIDERATIONS ...26
THE CARDIOLOGISTS ..27

CARDIOLOGY TESTS & IMAGING ..28

ELECTROCARDIOGRAPHY ..28
CHEST X-RAY ..28
24 - 48HR ECG MONITORING ..28
MORE PROLONGED ECG MONITORING ..28
TILT STUDIES ..29
24HR BLOOD PRESSURE MONITORING ..29
TREADMILL TESTING ..29
TRANSTHORACIC ECHOCARDIOGRAPHY ...32
STRESS ECHOCARDIOGRAPHY ..37
TRANSOESOPHAGEAL ECHOCARDIOGRAPHY ...37
CARDiac MRI (CMR) ..37
NUCLEAR Cardiology (MPS) ...38
CARDiac CT ..38

PRE- AND POST-PROCEDURAL CARE ..40
ANGIOGRAPHIC PROCEDURES ..40
CORONARY ANATOMY ...44
POST CATHETER COMPLICATIONS ..44

Vasovagal reaction ...44
Haemorrhage ...45
Cardiac tamponade ..45
Access site complications ..45
Chest pain ..46
Stroke/TIA ..46
Calcium Antagonists ... 69
Nitrates .. 69
ACE Inhibitors ... 69
Angiotensin Receptor Blockers .. 70
Lipid Lowering Therapy ... 70
Colchicine ... 71
Management of Diabetic Patients .. 72
Hypertension .. 72
Anticoagulation .. 73
‘Triple Anticoagulation’ ... 73
Switching P2Y₁₂ receptor drugs (Clopidogrel, Prasugrel and Ticagrelor) 75

SPONTANEOUS CORONARY ARTERY DISSECTION (SCAD) 75
TAKOTSUBO CARDIOMYOPATHY .. 76
MYOCARDIAL INFARCTION WITH NORMAL CORONARY ARTERIES (MINOCA) ... 76
CARDIAC COMPLICATIONS AND COVID-19 77

MANAGEMENT OF COMPLICATIONS OF STEMI 78

MANAGEMENT OF LEFT VENTRICULAR FAILURE 78
 Early LVF .. 78
 Established Pulmonary Oedema .. 78
 LVF with Hypotension (Cardiogenic Shock) 78

RIGHT VENTRICULAR MYOCARDIAL INFARCTION 80
PERICARDITIS AND DRESSLER SYNDROME 80

PYREXIA POST MI ... 80

MECHANICAL DEFECTS AFTER MYOCARDIAL INFARCTION 81
 Severe Mitral Regurgitation .. 81
 Ventricular Septal Defect .. 81
 Left Ventricular Aneurysm ... 81
 Intracardiac Thrombus ... 81

CARDIAC REHABILITATION & SECONDARY PREVENTION 82
 Smoking ... 82
 Diet and Dietary Supplements 82

NSTEMI & UNSTABLE ANGINA .. 84

INITIAL MANAGEMENT .. 84
RISK ASSESSMENT ... 84
ANTIPLATELET THERAPY ... 85
ANTICOAGULATION THERAPY .. 85
GLYCOPROTEIN IIb/IIIa INHIBITORS 86
STABLE ANGINA

ASSESSMENT ... 89
INVESTIGATIONS .. 90
 Exercise Testing ... 91
 CT calcium scoring .. 91
 CT coronary angiography (CTCA) .. 91
 Perfusion Imaging .. 91
 Angiography .. 91

DRUG TREATMENT .. 91
VARIANT/VASOSPASTIC ANGINA .. 93
ANGINA WITH NORMAL CORONARY ARTERIES 93

NON-CARDIAC CHEST PAIN SYNDROMES 94
 MUSCULO-SKELETAL .. 94
 GASTRO-OESOPHAGEAL CAUSES 94
 PULMONARY CAUSES OF CHEST PAIN 95
 PSYCHOSOMATIC CAUSES OF CHEST PAIN 95

MYOCARDITIS .. 96
PERICARDITIS .. 97
PERICARDIAL EFFUSIONS & TAMPOADE 99
PULMONARY EMBOLISM .. 100
 DEEP VEIN THROMBOSIS (DVT) 102

ARRHYTHMIAS .. 104
 BRADYCARDIA .. 104
 SINUS NODE .. 104
 AV NODE .. 104
 First degree AV block .. 104
 Second degree AV block (Wenckebach, Mobitz Type I) 104
 Second degree AV block (Mobitz Type II) 105
 Complete (Third Degree) AV block 105
 TEMPORARY PACING ... 105
 PERMANENT PACING .. 107
 Pacemaker Syndrome ... 109
HEART SYNCOPE

MANAGEMENT

INVESTIGATIONS

ECG .. 139
Routine blood tests 139
The Chest X-Ray 140
Echocardiography 140
CMR .. 140
Coronary Angiography 141
Considerations in the diagnosis of HFpEF 141
MANAGEMENT 142
CARDDMYOPATHIES

DILATED CARDIOMYOPATHY

Definition

Epidemiology

Aetiology

Clinical features

Investigations

Diagnosis

Treatments

Follow-up and family screening

HYPERTROPHIC CARDIOMYOPATHY

Clinical presentation

Investigations

Treatment

LEFT VENTRICULAR NON-COMPACTION CARDIOMYOPATHY

INFLTRATIVE CARDIOMYOPATHIES

Sarcoidosis

Amyloidosis
ADULT CONGENITAL HEART DISEASE (ACHD) .. 189
 ELECTIVE ACHD ADMISSIONS ... 189
 CYANOTIC AND FONTAN (SINGLE VENTRICLE) PATIENTS 189
 VESSEL CANNULATION FOR CATHETER PROCEDURES 190
 BLOOD TESTS ... 190

 Fabry disease ... 156
 Haemochromatosis .. 156

 ISOLATED RIGHT HEART FAILURE ... 157
 PERIPARTUM CARDIOMYOPATHY .. 157
 SCREENING IN CARDIOMYOPATHY ... 158
 CARDIAC TRANSPLANTATION ... 158

 PULMONARY HYPERTENSION .. 160
 DIAGNOSIS ... 160
 TREATMENT ... 161

 ELECTROLYTE DISTURBANCE ... 164

 HYPERTENSION .. 166
 DIAGNOSIS .. 166
 HISTORY & ASSESSMENT ... 166
 TREATMENT ... 168
 HYPERTENSIVE EMERGENCIES .. 170

 DISEASES OF THE AORTA ... 171
 AORTIC DISSECTION .. 171
 THORACIC AORTIC ANEURYSM ... 172

 CARDIAC MYXOMAS ... 174

 VALVULAR HEART DISEASE .. 175
 AORTIC STENOSIS ... 175
 AORTIC REGURGITATION ... 177
 MITRAL STENOSIS ... 178
 MITRAL REGURGITATION ... 180
 TRICUSPID REGURGITATION .. 182
 INFECTIVE ENDOCARDITIS ... 183
 INVESTIGATION .. 184
 MANAGEMENT .. 185
 ANTIBIOTIC PROPHYLAXIS ... 187
 MANAGEMENT OF PROSTHETIC VALVES 187

UHL Cardiology Guideline, Trust Ref C268/2016
Approved At RRCV August 2022
Contact Ian Hudson
NB: Paper copies of this document may not be most recent version. The definitive version is held on INsite Documents
Next Review November 2024
ASD CLOSURES .. 190
PFO CLOSURES (PROCEDURE AS PER ASD) 190
PDA CLOSURES .. 191
COARCTATION OF THE AORTA STENTING 192
PULMONARY / AORTIC VALVULOPLASTY 192
DC CARDIOVERSION OF ACHD CASES 192
CYANOTIC CONGENITAL HEART DISEASE AND IRON DEFICIENCY ... 193
GUIDE TO TIMELINES FOR OUTPATIENT REVIEW & INVESTIGATIONS 193
MARFAN DIAGNOSTIC CRITERIA 193

CARDIAC ASSESSMENT PRIOR TO NON-CARDIAC SURGERY 196
VASCULAR PROCEDURES ... 197
OPEN VERSUS LAPAROSCOPIC PROCEDURES 198
THORACIC SURGERY .. 198
CARDIAC INVESTIGATIONS ... 198
SURGERY IN PATIENTS WHO HAVE HAD PREVIOUS PCI 199
SURGERY IN PATIENTS ON WARFARIN 199
REVASCULARISATION PRIOR TO PLANNED SURGERY 199
SURGERY IN PATIENTS WITH HEART FAILURE 200
SURGERY IN PATIENTS WITH SEVERE VALVULAR HEART DISEASE ... 200
SURGERY IN PATIENTS WITH PACEMAKERS AND ICDs 200
ASSESSMENT OF POTENTIAL RENAL TRANSPLANT PATIENTS 201

CARDIAC SURGERY .. 202
POST-OPERATIVE ATRIAL FIBRILLATION 202

DRIVING AND CARDIOVASCULAR DISEASES 204
FLYING AND CARDIOVASCULAR DISEASES 222
TELEPHONE NUMBERS .. 223
BLEEP NUMBERS ... 227
APPENDIX .. 228
DIURETICS .. 228
ACE INHIBITORS ... 228
ANGIOTENSIN-II RECEPTOR ANTAGONISTS 229
ANGIOTENSIN RECEPTOR-NEPRILYSIN INHIBITOR (ARNI) 229
BETA - BLOCKERS ... 229
DIGOXIN .. 231
CALCIUM CHANNEL BLOCKERS 232
NITRATES ... 232
ATP-DEPENDENT POTASSIUM CHANNEL ACTIVATORS. 233
STATINS .. 233
ANTIARRHYTHMIC DRUGS .. 234
SEDATION FOR CARDIOVERSION 236
UNFRACTIONATED HEPARIN (UFH) 236
LOW-MOLECULAR WEIGHT HEPARIN (LMWH) 237
WARFARIN .. 237
DOACS ... 239
ANTIPLATELET THERAPY .. 240
GLYCOPROTEIN IIB/IIIA INHIBITORS 241
INOTROPES ... 244
CARDIOVASCULAR MEDICATIONS AND PREGNANCY... 246
IV DRUG COMPATIBILITY TABLE 247
ACKNOWLEDGEMENTS

A number of individuals have contributed over many years to the development of this guideline. There have been meaningful contributions from Dr Elved Roberts, Dr Dhutia, Dr Sandilands, Dr Stafford, Dr Somani, Dr Nicolson, Dr Loke, Professor Squire, Professor McCann, Dr Khoo and Dr Ladwiniec.

The ACHD section was written by Dr Simon MacDonald.

Special thanks must go to the various cardiology consultants, registrars, cardiac services and CCU staff.

Guideline is the important word, as this booklet is not intended to be the definitive text of the management of cardiac patients. It is simply meant to guide medical and nursing staff in the management of acute cardiac problems presenting to the cardiology wards or medical admissions units. The guidelines should also assist more widely across the trust in other disciplines.

If anyone using this guideline has any suggestions for additions, improvements or have identified errors, then please let me know.

Most of the text is based on information gathered from published guidelines from sources such as the various British societies, ESC, ACC/AHA, NICE and UpToDate®.

The author is grateful to the following for permission to reproduce copyright material in this guideline:

Resuscitation Council (UK) for permission to reproduce the Advanced Life Support algorithms.

IH
August 2022
DISCLAIMER

Medical knowledge is constantly changing. The author has, as far as it is possible, taken care to ensure that the information given in this text is accurate and up to date. However, readers are strongly advised to confirm that the information, especially with regard to drug usage, complies with current legislation and standards of practice.
USEFUL LINKS

Coronary Disease

ESC 2018 Guidelines on revascularisation: https://academic.oup.com/eurheartj/article/40/2/87/5079120

NICE 2020 Lipid Modification: https://cks.nice.org.uk/topics/lipid-modification-cvd-prevention/

NICE 2020 guideline on management of acute coronary syndromes (NG185): https://www.nice.org.uk/guidance/ng185

NICE 2020 Guidance on chest pain: https://cks.nice.org.uk/topics/chest-pain/

British Association of cardiac rehabilitation standards 2017: https://www.bacpr.com/resources/BACPR_Standards_and_Core_Components_2017.pdf

Arrhythmias and Heart failure
ESC 2013 Guidelines on cardiac pacing and resynchronisation therapy: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Cardiac-Pacing-and-Cardiac-Resynchronization-Therapy

ESC 2020 guideline on the management of atrial fibrillation:

AHA/ACC 2019 Guidelines on the management of atrial fibrillation:
https://www.ahajournals.org/doi/10.1161/CIR.0000000000000665

Hypertrophic cardiomyopathy
ESC 2014 Guideline for hypertrophic cardiomyopathy:
https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Hypertrophic-Cardiomyopathy

ESC risk calculator for device therapy in HOCM:
https://qxmd.com/calculate/calculator_303/hcm-risk-scd

Hypertension
ESC/ESH 2018 Guidelines on the management of hypertension:
https://academic.oup.com/eurheartj/article/39/33/3021/5079119

NICE/BSH 2019 guideline on the management of hypertension:
https://www.nice.org.uk/guidance/ng136

Pulmonary embolism
ESC 2019 Guidelines for the diagnosis and management of pulmonary embolism:
https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Acute-Pulmonary-Embolism-Diagnosis-and-Management-of

NICE 2020 Guidelines for the diagnosis and management of pulmonary embolism:
https://cks.nice.org.uk/topics/pulmonary-embolism/

Valvular Heart Disease
ESC 2015 Guidelines for the management of endocarditis
https://academic.oup.com/eurheartj/article/36/44/3075/2293384

ESC 2017 Guidelines on the management of valvular heart disease:
https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Valvular-Heart-Disease-Management-of

Non-cardiac surgery
ESC 2014 Guidelines for the management of patients undergoing non-cardiac surgery:
AHA/ACC 2014 Guidelines for the management of patients undergoing non-cardiac surgery:
https://www.ahajournals.org/doi/pdf/10.1161/CIR.0000000000000106

Surgical risk calculator (Gupta perioperative cardiac risk calculator)
http://www.surgicalriskcalculator.com/miorcardiacarrest

The Revised Cardiac Risk Index:
http://www.mdcalc.com/revised-cardiac-risk-index-for-pre-operative-risk/

National Surgical Quality Improvement Program perioperative myocardial infarction and cardiac arrest risk calculator:
https://riskcalculator.facs.org/RiskCalculator/PatientInfo.jsp

Syncope
ESC 2018 Guidelines on the diagnosis and management of syncope:

Cardiovascular diseases in Pregnancy
ESC 2018 Guidelines for the management of cardiovascular diseases during pregnancy:

Driving and flying and cardiovascular disorders
DVLA Guidance (March 2020 update):

CAA guidance on assessing fitness to fly:
http://www.caa.co.uk/Passengers/Before-you-fly/Am-I-fit-to-fly/Guidance-for-health-professionals/Assessing-fitness-to-fly/

BCS Fitness to fly for passengers with cardiovascular disease:
https://www.bcs.com/documents/BCS_FITNESS_TO_FLY_REPORT.pdf

Investigation of pilots with cardiovascular disease:
http://www.caa.co.uk/Aeromedical-Examiners/Medical-standards/Pilots-(EASA)/Conditions/Cardiology/Cardiovascular-system-general/

Contacts for UK cardiologists and cardiac units (requires free registration):
http://www.cardiodirectory.co.uk/
Useful cardiology websites

British Cardiovascular Society:
http://www.bcs.com/pages/default.asp

British Cardiovascular Intervention Society:
http://www.bcis.org.uk/pages/default.asp

British Society for Heart Failure:
http://www.bsh.org.uk/

British Hypertension Society:
http://www.bhsoc.org/

British Heart Rhythm Society:
http://www.bhrs.com/

British Society of Echocardiography:
http://www.bsecho.org/home/

British Society of Cardiovascular Magnetic Resonance:
http://www.bscmr.org/

British Society of Cardiovascular Imaging:
http://www.bsci.org.uk/

British Heart Foundation:
https://www.bhf.org.uk

British Association for Nursing in Cardiovascular Care:
http://www.bancc.org/pages/default.asp

British Association for Cardiovascular Prevention and Rehabilitation:
http://www.bacpr.com/pages/default.asp

European Society of Cardiology:
http://www.escardio.org/Pages/index.aspx

American College of Cardiology:
http://www.acc.org/

American Heart association:
https://www.heart.org/

BNF
https://www.medicinescomplete.com/mc/bnf/current/
Cardiovascular Calculators

BMI calculator:
http://www.medical-calculators.co.uk/bmi_met.html

CHA_{2}DS_{2}-VASc Score:

CIN risk calculator:
https://renalguard.com/risk-calculators/

Corrected QT interval (QTc):

Creatinine clearance calculator:
http://clincalc.com/Kinetics/CrCl.aspx

CRUSADE Bleeding score:

DAPT Risk calculator:
http://tools.acc.org/DAPTriskapp/?_ga=2.235276161.1246861209.1587477033-2072346868.1586268132#!/content/calculator/

EuroSCORE II calculator:
http://www.euroscore.org/calc.html

General cardiovascular risk calculators:
https://qrisk.org/2017/

Grace risk score:

HAS-Bled score:

HCM sudden cardiac death risk calculator:
https://qxmd.com/calculate/calculator_303/hcm-risk-scd

Height conversion calculator (can also be via Google Search):
http://www.simetric.co.uk/feet_to_metres.php

Precise DAPT:
http://www.precisedaptscore.com/predapt/webcalculator.html

SI unit conversion calculator:
http://www.soc-bdr.org/rds/authors/unit_tables_conversions_and_genetic_dictionaries/e5196/index_en.html
STS (Cardiac surgical risk) score calculator:
http://riskcalc.sts.org/stswebriskcalc/calculate

Syntax Score calculator:
http://www.syntaxscore.com/calculator/start.htm

TIMI Risk score:
https://www.mdcalc.com/timi-risk-score-ua-nstemi

Weight conversion calculator (can also be via Google Search):
http://www.stonetokg.co.uk/

Wells criteria for DVT:

Websites for patient information

Ablation:
https://www.bhf.org.uk/informationsupport/treatments/ablation

Angina:
https://patient.info/heart-health/angina-leaflet
https://www.bhf.org.uk/informationsupport/conditions/angina

Angioplasty:
https://patient.info/heart-health/coronary-angioplasty-leaflet

Atrial fibrillation:
https://patient.info/heart-health/atrial-fibrillation-leaflet
https://www.bhf.org.uk/informationsupport/conditions/atrial-fibrillation

Atrial flutter:
https://www.bhf.org.uk/informationsupport/conditions/arrhythmias/atrial-flutter

Bypass surgery:
https://www.bhf.org.uk/informationsupport/treatments/coronary-bypass-surgery

Cardioversion:
https://www.bhf.org.uk/informationsupport/treatments/cardioversion

DCM:
https://patient.info/heart-health/dilated-cardiomyopathy
https://www.bhf.org.uk/informationsupport/conditions/cardiomypathy/dilated-cardiomyopathy

Disordered breathing:
https://www.physiotherapyforbpd.org.uk/

HCM:
https://patient.info/heart-health/hypertrophic-cardiomyopathy-leaflet
https://www.bhf.org.uk/informationsupport/conditions/cardiomypathy/hypertrophic-cardiomyopathy

Healthy Eating:
https://www.bhf.org.uk/informationsupport/support/healthy-living/healthy-eating
Hypertension:
https://patient.info/heart-health/high-blood-pressure-hypertension
https://www.bhf.org.uk/informationsupport/risk-factors/high-blood-pressure

ICD:
https://www.bhf.org.uk/informationsupport/treatments/implantable-cardioverter-defibrillator

MI:
https://patient.info/heart-health/heart-attack-myocardial-infarction-leaflet
https://www.bhf.org.uk/informationsupport/conditions/heart-attack

Pacemakers:
https://www.bhf.org.uk/informationsupport/treatments/pacemakers

Palpitations:
https://patient.info/heart-health/palpitations-leaflet
https://www.bhf.org.uk/informationsupport/conditions/palpitations

Takotsubo:
https://www.bhf.org.uk/informationsupport/conditions/cardiomyopathy/takotsubo-cardiomyopathy

TAVI:
https://www.bhf.org.uk/informationsupport/treatments/tavi

Valve disease:
https://patient.info/heart-health/heart-valves-and-valve-disease
https://www.bhf.org.uk/informationsupport/conditions/heart-valve-disease

Valve surgery:
https://www.bhf.org.uk/informationsupport/treatments/valve-heart-surgery

All of these links have been verified as safe and active at the time of publication (2022).
CCU ISSUES

Patients of all ages may be admitted to the Coronary Care Unit with suspected or proven acute myocardial infarction, unstable angina or serious conduction defects/cardiac arrhythmias, if regarded as suitable for intensive medical management.

Patients may be admitted directly via paramedic crews, the Emergency Department or other wards. The designated CCU medical team should see patients without delay.

Suspected myocardial infarction patients contacting the 999 service in Leicester will be seen by the paramedic service who will record a 12 lead ECG at the patient's location. If the ECG reveals acute infarction or ischaemia the paramedic crew will arrange direct admission to CCU. In the case of ST-elevation myocardial infarction (STEMI), a pre-alert will be broadcast to the CCU team and catheter labs.

Eligible patients for admission to the CCU may include but not be limited to:

- Patients with STEMI
- Patients with moderate or high-risk acute coronary syndromes (dynamic ECG changes, haemodynamic instability or significantly elevated Troponin I)
- Patients after cardiac arrest (will need HDU/ITU if requiring respiratory support)
- Cardiogenic shock or severe heart failure requiring inotropic support
- Complex cardiac arrhythmias (especially those associated with major symptoms and/or haemodynamic compromise)
- Patients requiring temporary pacing
- Patients receiving medication and/or treatments requiring continuous cardiac monitoring including inotropic and antiarrhythmic agents
- Patients with aortic dissection
- Patients with hypertensive emergencies
- Patients with cardiac tamponade
- Patients following complex procedures (TAVI, complex ablation, complicated PCI)

Acute myocardial infarction or unstable angina should be considered in all patients with chest pain admitted to the various admissions units. The ECG should be repeated and reviewed several times within one hour of admission and as appropriate thereafter. If patients develop signs of ischaemia or infarction on the ECG they should be transferred to the CCU. Patients identified as having a STEMI should, after confirmation with CCU, have a ‘STEMI alert’ put out via switchboard to alert relevant personnel.

Consultant responsibility on CCU is arranged on a rotational scheme. SpR cover is readily available. Patients should be seen first thing each morning and reassessed later in the day. It is appropriate for most patients to be discharged to the wards within 24 to 48 hours. In the case of bed shortages, the SpR or consultant should prioritise discharges. A decision should also be made as to the appropriate
destination of the patient following discharge from CCU. Any patient inappropriately placed on CCU should be transferred out as quickly as possible.

It is important that a CCU bed is always free to take an admission without delay. In the case of bed shortages the unit should liaise with both medical staff and bed managers in order to maintain CCU bed availability. Forward planning is important as only in exceptional circumstances should patients be transferred after 22:00hrs.

It is the responsibility of the CCU team to clerk all admissions. If there is ever uncertainty, ASK FOR HELP. The covering SpR should always be advised of new admissions immediately. Investigations should be performed as listed later. Clerking should be done employing the yellow CCU proforma even if patients have already been clerked elsewhere. All patients require a DVT assessment to be made. Please ensure this has been done.

The yellow clerking sheets should be filled in even when patients are transferred from other wards as the design allows quicker assessment of pertinent issues such as risk factor profile and previous cardiac events. The yellow sheets are multidisciplinary and so nursing and medical staff document relevant issues in them for improved communication.

Ward rounds take place first thing each morning and generally again later in the day. It is essential that a full hand-over is performed every day to the next doctor on duty for the unit. Discharging patients should generally be on the advice of the SpR or consultant. The receiving team should be informed as soon as possible. Electronic discharge summaries (EDS) must be done for all patients being discharged home and also when being transferred to other units (both internal and external). If external ensure copies of the letters go to the referring hospital.

It should be remembered that not all patients in CCU end up having a primary cardiac diagnosis. The differential diagnosis of the patient with chest pain includes:

- Pulmonary embolism
- Pneumonia
- COPD
- Cholecystitis/biliary colic
- Renal colic
- Pancreatitis
- Peptic ulcer disease
- Oesophagitis
- Pneumothorax
- Musculoskeletal pain
- Aortic aneurysm
- Aortic dissection

In addition, there are CARDIAC AND NON-CARDIAC conditions which may present with ST changes and raised Troponin I levels (see page 55).

Finally in patients with STEMI who have undergone PCI, low-risk patients with successful primary PCI and complete revascularization can safely be discharged from hospital on day 2 or day 3 after PCI. Low risk includes age < 70 years, LVEF > 45%, one or two vessel disease and no arrhythmia issues.
It is the responsibility of the ward based doctors to ensure all patients are seen on at least a daily basis. Senior review should be sought on all new admissions within hours of admission and certainly on the same day. A management plan should be made as soon as possible. Do not leave messages with secretaries or email to get a review, speak to the SpR or consultant directly. Financial penalties are incurred if patients’ length of stay is prolonged and so it is in everyone’s interests (not least the patient) to ensure discharge as soon as safe to do so. If patients are only staying in waiting for investigations that are not going to directly impact on their inpatient management, they should be considered for discharge for the test to be done as an outpatient.

For patients admitted overnight from other centres it is mandatory for them to be clerked and a prescription entered on Nervecentre.

All patients require a DVT assessment to be made. Please ensure this has been done. ReSPECT forms need to be completed as appropriate.

A recurring theme across the unit is a delay in discharge summaries being written and is a regular cause for complaints and patient and family dissatisfaction. TTOs should be done as soon as possible and when requested to do so. Making drafts in advance saves time. **Please ensure summaries are copied to referring hospitals in the case of patients transferred in from other units.** Ensure duration of medication is documented (e.g. 12 months clopidogrel or ticagrelor or prasugrel after PPCI). Note that pharmacy closes at 6pm and so TTOs should be done as early as possible to facilitate discharge. Accuracy is clearly mandatory in discharge letters and these are audited on a regular basis. Death summaries should be written for patients who die so the GP has some understanding of the admission and final outcome.

Attention should be given to day-case patients where prompt discharge is crucial to allow day case lists to run smoothly. If morning patients are not discharged promptly it delays the afternoon lists. There are occasions when planned day case patients have to stay overnight. Please check and ensure a prescription is entered on Nervecentre. Make it your business to know when your consultant has day case procedures happening and ensure you get involved in their care. Adult congenital patients may be admitted into your ward base. These are your responsibility under the supervision of the adult congenital cardiologist.

Care should be taken to ensure drug histories are accurate and Nervecentre completed to the standard expected. These are also audited on a regular basis. A common failing is not documenting the reason for the prescription. Antibiotic prescriptions are frequently below the standard required so please ensure familiarity with what is expected by accessing the antimicrobial website on Insite (http://insite.xuhl-tr.nhs.uk/antibiotic/).

ACS (suspected and confirmed) patients transferred from the acute cardiac assessment unit often have only one or two ECGs done. Ensure these are repeated as appropriate. Some will not have had lipids or glucose checked – ensure they are done. In patients who require procedures, consent must be obtained before listing them on ICE. Consent is the responsibility of the SpR or consultant. For patients undergoing PCI a ‘group and save’ should be considered only for selected patients.

Patients who are referred for surgery should be discussed at a senior level. Referrals are done by ICE referral. This should not replace discussion at SpR or consultant level with the cardiac surgeons. Consider whether additional investigations or treatment are needed prior to referral such as carotid Dopplers in those with bruits or a prior history of stroke, and dental assessments in those who require valve surgery (if they have teeth). Patients will need cross matching prior to surgery. **Antiplatelets** (especially prasugrel) may need stopping - so check.
Regular audits take place and we encourage juniors to get involved. Some are mandatory (documentation audits, prescribing audits, discharge letter audits) and your contribution is crucial.

Please be aware of infection control issues and familiarise yourself with hospital policy. Comply with hand washing recommendations and the absence of clothing and watches below elbow level.

Finally ensure you keep up to date with your mandatory training requirements.
REGISTRAR ISSUES

When accepting patients from other units AND specialities it is important that the transfer is appropriate and, if there is any doubt, the relevant consultant should be contacted by the SpR. For patients with major co-morbidities it is mandatory that they are discussed at the highest level.

If imaging has been performed by the referring unit (angiography, echo, TOE) every effort should be made to have the images sent with the patient or via urgent PACS transfer to avoid unnecessary duplication and delays in Glenfield.

Out of hours, when there is a STEMI alert, the SpR must take personal responsibility to ensure ALL staff have been notified and are on their way in. The STEMI alert is internal only, and the bleeps are not carried by all staff including the cardiac catheter team and consultant.

In clinics do not simply bring patients back for follow up unless clinically indicated. This is a recurring issue and clogs up clinics with stable asymptomatic patients.

Do not routinely list patients with possible ACS for angiography, especially if there is no hs-TnI rise and the ECGs are normal. Imaging may be appropriate but on an outpatient basis rather than urgent inpatient basis. If there is any doubt, they should be discussed with an interventional cardiologist. When listing ensure issues like vascular access are evaluated and the patient's ability to lie flat is established. Out of hours decisions regarding listing for angiography may be best deferred if uncertain; it is harder to tell a patient later that they do not need an angiogram when they have previously been told they do.

Patients with pericardial effusions may need urgent drainage. It can be difficult to determine in many instances and if there is any doubt the echo should be reviewed by a (preferably) imaging consultant.
OUTPATIENT CONSIDERATIONS

Outpatients can be daunting for the inexperienced and attempts should be made to sit in on clinics with an experienced doctor before being thrown in at the deep end.

An awareness of the time allocated to appointments is crucial to try and keep a clinic running to time. Focus should be on the cardiac issue being addressed. That does not mean that a holistic approach is wrong, it means that your responsibility is to deal primarily with the cardiac problem. Patients should be encouraged to discuss non-cardiac issues with their GP, and issues of concern can be addressed in the correspondence. Referrals to other specialities should be discussed with the consultant in charge of the clinic.

If tests need requesting, request them. Do not ask the GP to do them. As with inpatients, only request a test if it is going to alter the management of the patient. Some investigations (especially echo) are requested when the indication is unclear. Please be aware of the indications for follow up echoes outlined elsewhere in this guideline. Do not request in-house echoes if the patient has had a recent community echo with InHealth or PDS Medical as these scans can be viewed online (https://ultraling.com/uk/). Access can be arranged by asking Marion Campton.

For patients presenting with chest pain, a baseline chest X-ray is usually warranted - but check on PACS or iCRIS whether this has already been done recently. A recent chest X-ray is mandatory when requesting perfusion scans. Avoid unnecessary X-rays and be aware of previous and potential future radiation exposure. The same applies for any investigation involving radiation exposure.

The Trust has previously been ‘fined’ for following patients up. The commissioning process for outpatient activity is currently under review. If a new referral is unlikely to have significant pathology, it is reasonable to send the results to the patient and the GP following their initial appointment rather than bringing them back for review (i.e. formally identify a VIRTUAL follow-up). If patients are stable, symptom-free, and have received definitive treatment, consideration should be given to discharge back to the GP with instructions in the correspondence as to the indications for re-referral. If in doubt, check with the consultant.

Do not arrange outpatient follow up for inpatients unless the consultant requests you to do so.

Cardiac specialist nurses may well ask for advice regarding patients seen in the rapid access clinic. Please ensure that they are seen promptly and courteously.
THE CARDIOLOGISTS

All of Glenfield’s consultant adult cardiologists see patients with any cardiac condition, but they all have sub-speciality interests.

The interventional cardiologists are those who provide the angioplasty service and structural programme* (TAVI, valvuloplasties, ASD closures). The team comprises of Dr David Adlam*, Dr Amerjeet Banning, Dr Ian Hudson, Dr Shazia Hussain, Professor Jan Kovac*, Dr Andrew Ladwiniec, and Dr Elved Roberts*. Dr Ladwiniec sub-specialises in treating chronically occluded arteries (CTOs).

The electrophysiologists (arrhythmia experts) are Dr Shui Hao Chin, Dr Mokhtar Ibrahim, Dr Merzaka Lazdam, Professor Andre Ng, Dr Alastair Sandilands and Dr Riyaz Somani.

The device team (pacemakers, defibrillators) comprise Dr Rajesh Chelliah, Dr Harshil Dhutia, Dr Ian Loke, Dr Will Nicolson and Dr Ravi Pathmanathan. Dr Loke and Dr Nicolson are also members of the heart failure team along with Professor Iain Squire and Dr Daniel Chan. Dr Dhutia has an interest in inheritable cardiac conditions.

Professor Gerry McCann leads the cardiac MRI service, with cardiac MRI also provided by Dr Imran Ansari, Dr Jayanth Arnold, Dr Jeffrey Khoo and Dr Anvesha Singh. The stress echo and transoesophageal echo (TOE) services are provided by Drs Khoo, Chelliah, Ansari and Sharaf, whilst Dr Singh also provides TOE. Cardiac MRI and cardiac CT is also supported by the cardiac radiologists Dr Aparna Deshpande, Dr Indrajeet (Raj) Das and Dr Praveen Rao. Cardiac CT is also supported by Dr Amrita Bajaj, Dr Prajakta Pinglay and Dr Ruth Machin.

Professor Toru Suzuki is an expert in diseases of the aorta and genetic aortopathies.

Dr Aidan Bolger, Professor Frances Bu’Lock and Dr Tariq Saifullah are the adult congenital specialists.

Dr Martin Behounek and Dr Hala Sharaf are the cardiology consultants for the acute cardiology assessment unit.
Most cardiac investigations can be requested using the appropriate request forms. Increasingly requests are being made electronically via ICE. Requests for more complex tests (stress echocardiography, transoesophageal echocardiography, cardiac CT or MRI and coronary angiography) must be made via one of the consultant cardiologists or SpRs. Currently all isotope perfusion requests and CMR requests are consultant ONLY. For all investigations the clinical information is of crucial importance and should be detailed and accurate. If there is a doubt as to which test may be the most appropriate (especially in imaging) ask the imaging consultants for advice. Results for all cardiac investigations other than 12 lead ECG are posted on iCRIS (available via Insite). It is sensible and time saving to have the shortcut to iCRIS on your desktop log in page. Results should also be available on ICE. Radiology results are also available on PACS (UVZFP).

It is worth emphasising that before requesting any tests it is worthwhile ensuring that these have not been performed before by checking on iCRIS or ICE. This is particularly true for imaging and functional studies which are expensive and not infrequently involve exposure to radiation (MPS, CT etc). Ensure the patient has not had a recent echo in the community before requesting another ‘in house’. If a previous test has been indeterminate or a false positive, there is no point in repeating it. For instance some patients have poor echo windows and so alternative imaging may be more appropriate. In addition, some patients have had a previous MPS showing apparent inferior ischaemia but have then gone on to have a normal coronary angiogram.

It is also worth stating that it is helpful to discuss any test with an imaging consultant if it is particularly urgent, there is a specific question to be answered or it lies outside the guidelines.

Electrocardiography

Most ECGs can be done by the cardiology nursing staff.

Chest X-Ray

A chest X-ray can exclude pulmonary oedema and may uncover non-cardiac causes of chest pain. Should be considered on all acute admissions.

24 - 48hr ECG Monitoring

Inpatients that require ECG monitoring are usually more appropriately assessed with telemetry or continuous monitoring on the CCU or wards. Please determine whether an inpatient 24hr ECG is considered essential before requesting. It is likely that this will be a consultant request only in the near future. Three electrodes are applied attached to a small recorder. It is a useful investigation for frequent symptoms of palpitations and for assessing rate control for specific arrhythmias such as atrial fibrillation or flutter, as well as ectopy and arrhythmia burden. A request for inpatients is via ICE. For outpatients, requests should be sent (via the generic form) to cardiac investigations.

More Prolonged ECG Monitoring

This is an outpatient investigation which should be reserved for patients who have more intermittent symptoms suspected to be due to arrhythmia. Requests should be sent (via the generic form) to cardiac investigations or via ICE.

A cardiac Looper device involves attachment of electrodes to the patient’s chest and the activation of the recorder by the patient. It is operated by the simple press of a button. There is a programmable recording time pre and post button activation allowing the onset of the event to be recorded. It is well suited for patients with rare brief symptoms or possibly even brief loss of consciousness, as the device can be activated on regaining awareness. It is not suitable for
patients with sensitive skin because the electrodes are attached for prolonged periods. It requires a level of patient understanding and co-operation. It is usually issued for 1-2 weeks.

A cardiac memo recorder involves no electrodes. It is a patient activated device that is applied to the chest at time of symptoms. It records 1 or 2 channels of ECG. The memo only stores events after patient activation so is not suitable for short lasting symptoms. It requires a level of patient understanding and co-operation. A memo is usually issued for 1 week.

Continuous ECG recording via three electrodes attached to a small recorder is also available for 72 hrs, 5 days and 7 days (5 days+ is a consultant request only). This is suited to patients with less frequent but significant symptoms that may involve loss of consciousness, and for the screening of potentially asymptomatic arrhythmia episodes in those known to be at risk. It is also suitable for assessing arrhythmia or ectopy burden. Longer durations are not suitable for patients with sensitive skin. These monitors are suitable for patients that may struggle to activate a Looper or memo device.

In patients with recurrent palpitations, particularly associated with pre-syncope or syncope, an implanted loop recorder (ILR) should be considered. Referral can be made using the device referral forms (ICE referral for inpatients).

Tilt Studies

Requests are sent to the respiratory department at GGH (orange form). A useful investigation for recurrent syncope (see page 135). Ensure patients do not have significant carotid disease.

24hr Blood Pressure Monitoring

This can be a useful investigation for assessing patients with uncontrolled hypertension, highly variable BP readings or where you suspect the patient is over-treated. It is not indicated on an inpatient basis. Referral is to the Respiratory Physiology Department (white form, blue print). Remember to fill in whether the patient is an infection risk or requests will be returned.

Treadmill Testing

Inpatient exercise treadmill testing (ETT) is available for potentially ‘at risk’ patients who require risk stratification before discharge. Requests for an inpatient ETT must be discussed personally with a cardiac technician and medical cover must be arranged. Early post-infarct stress tests are usually limited to stage 2 of the Bruce protocol or equivalent.

Technicians supervise most outpatient ETT, as long as there are no specific contraindications (see ETT protocol next page). Treadmill tests have a moderately high false positive rate, especially in middle aged women. All requests are currently made via a referral form (generic) for outpatients and via ICE for inpatients. The weight limit for the treadmill is 135kg.

Currently it is not possible locally to implement the NICE recommendation to effectively abandon the ETT, and so an ETT can still be performed. The ETT has been shown to be of value in assessing prognosis of patients with known coronary artery disease. An ETT is also helpful in patients at high risk of CHD, where a positive test can provide useful prognostic information. There are more false positive tests in women where perfusion imaging may be a better test.

Contraindications:

- Acute myocardial infarction (within two days)
- Unstable angina
- Uncontrolled cardiac arrhythmias causing symptoms or haemodynamic compromise
- Symptomatic severe aortic stenosis
• Uncontrolled symptomatic heart failure
• Acute pulmonary embolus or pulmonary infarction
• Acute myocarditis or pericarditis
• Active endocarditis
• Acute aortic dissection
• Acute non-cardiac disorder that may affect exercise performance or be aggravated by exercise (eg, infection, renal failure, thyrotoxicosis)
• Inability to obtain consent

Relative contraindications (consultant only requests):

• Left main coronary stenosis or its equivalent
• Moderate stenotic valvular heart disease (but can assist assessment of asymptomatic aortic stenosis)
• Electrolyte abnormalities
• Severe hypertension (systolic ≥ 200 mmHg and/or diastolic ≥ 110 mmHg (which are both reasons to consider terminating a test)
• Tachyarrhythmias or bradyarrhythmias, including atrial fibrillation with uncontrolled ventricular rate
• Hypertrophic cardiomyopathy and other forms of outflow tract obstruction
• Mental or physical impairment leading to inability to cooperate
• High-degree atroventricular block

The ETT clearly should only be performed in patients who are able to exercise sufficiently - so is not possible in those with severe claudication, airways disease or those with physical disabilities etc. An ETT test that fails to achieve 85 - 90% of the patient’s predicted maximal heart rate (generally 220 – age) is generally considered inadequate to rule out ischaemia.

The ETT is not helpful in patients with ECG changes at rest that can interfere with interpretation of the exercise:

• Ventricular pre-excitation (Wolff-Parkinson-White pattern)
• Ventricular paced rhythm
• Left bundle branch block
• Greater than 1 mm ST depression at rest
• Digoxin use with associated ST-T abnormalities
• Left ventricular hypertrophy with ST-T abnormalities
• Hypokalaemia with ST-T abnormalities
The usual protocol employed is the Bruce protocol:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Grade (%)</th>
<th>Speed (mph)</th>
<th>Total time (min)</th>
<th>O2 uptake (ml/kg/min)</th>
<th>METS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1.7</td>
<td>3</td>
<td>17</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>2.5</td>
<td>6</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>3.4</td>
<td>9</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>4.2</td>
<td>12</td>
<td>47</td>
<td>13</td>
</tr>
</tbody>
</table>

Patients should be given specific instructions on whether or not to take their usual medications. Patients undergoing exercise testing for diagnostic purposes should usually be instructed not to take anti-ischaemic medications or drugs that slow the heart rate. However, anti-ischaemic medications should be continued if the purpose of the test is to establish prognosis or adequacy of anti-ischaemic therapy.

Indications to stop the ETT:

- **Patient determined:**
 - Patient wants to stop
 - Significant chest discomfort
 - Marked fatigue or severe dyspnoea
 - Other limiting symptoms (dizziness, leg cramps, joint discomfort, etc)

- **Protocol determined:**
 - Patient does not look well (eg, ataxia, confusion, pallor, cyanosis, etc)
 - Exertional hypotension (systolic BP drop > 10 mmHg below standing systolic BP measured at rest prior to test)
 - Severe angina
 - Systolic BP >250 mmHg
 - Diastolic BP >115 mmHg

- **ECG endpoints**
 - Marked ST segment depression (> 2 mm of horizontal or downsloping of ST segment depression)
 - New bundle branch block which cannot be distinguished from ventricular tachycardia
 - ST segment elevation (> 1.0 mm) in leads without diagnostic Q waves (other than V1 or aVR) - ST segment elevation in lead aVR is a strong predictor of obstructive coronary artery disease involving the left main coronary artery or the ostium of the LAD (sensitivity and specificity of 75 and 81 percent, respectively).
 - New high grade (i.e. Mobitz 2 or complete) AV block
 - Ventricular tachycardia or fibrillation
 - Increasing ventricular ectopy (premature beats, couplets or non-sustained ventricular tachycardia), especially if ischaemia present – mortality is higher in those only with frequent ectopy in recovery
 - Onset of supraventricular tachyarrhythmias
• Exercise and stress test indications of adverse prognosis:
 - Poor maximal exercise capacity.
 - Limited systolic blood pressure response i.e. fall or no rise from baseline.
 - ≥ 1 mm ST depression during stage 2 or less.
 - or ≥ 2 mm ST depression at any time.

Abnormalities may only become apparent during recovery. The ECG should be recorded every two minutes for 7 to 10 minutes until the heart rate falls below 100 or the ECG waveform returns to the control baseline pattern. Patients with positive stress tests need to be considered for coronary angiography.

An ETT is a low risk investigation even in patients with known ischaemic heart disease, but serious complications occur in 2 - 4 per 1,000 tests. Death may occur at a rate of 1 - 5 per 10,000 tests.

An ETT is a poor diagnostic test in low-risk populations. The CASS study concluded that the value of the test is limited in a heterogeneous population of patients with angina and that exercise testing should not be regarded as a screening test. An exercise ECG was best performed with patients on treatment to improve the specificity of the test and to avoid angiography in those who are well controlled on medical treatment.

In people at lower risk of their chest pain being due to angina, a CT coronary calcium score is a useful non-invasive way of investigating.

Where an ETT is impractical (such as immobility), or where there is thought to be a higher likelihood of chest pain being due to angina, consideration should be given to arranging a stress myoview scan, stress perfusion CMR scan or stress echocardiogram. CT calcium scoring and/or CTCA should also be considered.

Transthoracic Echocardiography

Transthoracic echocardiography outpatient requests should be sent to Cardiac Investigations (generic form). Inpatients can be requested via ICE. Please provide ALL relevant clinical details; requests without adequate information are liable to be returned. Echocardiograms are performed in the departments unless otherwise requested - if you require a bedside echo, you must speak personally to one of the cardiac technicians. Echoes are invariably less informative when performed at the bedside, so please do not request a portable echo unless it is strictly necessary. Urgent echoes should be performed by the cardiology SpR if a technician is unavailable. At LGH and LRI, all requests for echoes out of hours must be ratified via the non-interventional cardiology consultant on-call. Echoes should not be requested unless the result will alter management. There is a community provider that GPs can access for patients who need echoes. These echoes can be viewed online via https://ultraling.com/uk/ by those with a username and password (contact Marion Campton in cardiology services if you require access).

The following tables give updated reference limits for normal chamber sizes, function and aortic sizes published by the BSE in 2019.

See page 58 for the role of echo in acute coronary syndromes.
Table 1 Echocardiographic parameters covered by the BSE 2019 guidelines.

<table>
<thead>
<tr>
<th>BSE reference intervals 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear left ventricular dimensions and LV mass</td>
</tr>
<tr>
<td>Left ventricular volumes</td>
</tr>
<tr>
<td>Left ventricular ejection fraction</td>
</tr>
<tr>
<td>Left atrial volume</td>
</tr>
<tr>
<td>Indexed right ventricular end diastolic area</td>
</tr>
<tr>
<td>Indexed/non-indexed right atrial area</td>
</tr>
<tr>
<td>Right ventricle and right ventricular outflow tract diameter</td>
</tr>
<tr>
<td>Right ventricular fractional area change</td>
</tr>
<tr>
<td>Aortic root dimensions</td>
</tr>
<tr>
<td>Tissue Doppler: mitral annular s' and right ventricular s'</td>
</tr>
</tbody>
</table>

Table 2 Linear left ventricular dimensions and mass.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVIdD (mm)</td>
<td>37-56</td>
<td>57-61</td>
<td>61-65</td>
<td>>65</td>
</tr>
<tr>
<td>LVIdS (mm)</td>
<td>22-41</td>
<td>41-45</td>
<td>46-50</td>
<td>>50</td>
</tr>
<tr>
<td>IVSd (mm)</td>
<td>6-12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LVPWd (mm)</td>
<td>6-12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LV mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVMI (g/m²)</td>
<td>40-110</td>
<td>111-127</td>
<td>128-145</td>
<td>>145</td>
</tr>
<tr>
<td>LV mass (g)</td>
<td>72-219</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVIdD (mm)</td>
<td>35-51</td>
<td>52-55</td>
<td>56-59</td>
<td>>59</td>
</tr>
<tr>
<td>LVIds (mm)</td>
<td>20-37</td>
<td>38-42</td>
<td>43-46</td>
<td>>46</td>
</tr>
<tr>
<td>IVSd (mm)</td>
<td>5-11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LVPWd (mm)</td>
<td>6-12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LV mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVMI (g/m²)</td>
<td>33-99</td>
<td>98-115</td>
<td>116-131</td>
<td>>131</td>
</tr>
<tr>
<td>LV mass (g)</td>
<td>51-173</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

IVSd, inter-ventricular septal thickness in diastole; LV, mass calculated using the linear method; LVIdD, left ventricular internal diameter in diastole; LVIds, left ventricular internal diameter in systole; LVMI, left ventricular mass index; LVPWd, left ventricular posterior wall thickness in diastole.
Table 3 Left ventricular volumes.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Mildly dilated</th>
<th>Moderately dilated</th>
<th>Severely dilated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEDVi (mL/m²)</td>
<td>30–79</td>
<td>80–91</td>
<td>92–103</td>
<td>>103</td>
</tr>
<tr>
<td>LVESVi (mL/m²)</td>
<td>9–31</td>
<td>32–36</td>
<td>37–42</td>
<td>>42</td>
</tr>
<tr>
<td>LVEDV (mL)</td>
<td>53–156</td>
<td></td>
<td>24–42</td>
<td></td>
</tr>
<tr>
<td>LSV (mL)</td>
<td>15–62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEDVi (mL/m²)</td>
<td>29–70</td>
<td>71–81</td>
<td>82–91</td>
<td>>91</td>
</tr>
<tr>
<td>LVESVi (mL/m²)</td>
<td>8–27</td>
<td>28–32</td>
<td>33–37</td>
<td>>37</td>
</tr>
<tr>
<td>LVEDV (mL)</td>
<td>46–121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSV (mL)</td>
<td>13–47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volumes obtained using the biplane Simpson's method.
LVEDVi(i), left ventricular end-diastolic volume (indexed); LVESVi(ii), left ventricular end-systolic volume (indexed).

Table 4 Left ventricular ejection fraction.

<table>
<thead>
<tr>
<th></th>
<th>Severely impaired LVEF</th>
<th>Impaired LVEF</th>
<th>Borderline low LVEF</th>
<th>Normal LVEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males and females</td>
<td>≤35%</td>
<td>36–49%</td>
<td>50–54%</td>
<td>≥55%</td>
</tr>
</tbody>
</table>

LVEF derived using the biplane Simpson's method.

Table 5 LA volume.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Borderline</th>
<th>Dilated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males and females</td>
<td><34</td>
<td>34–38</td>
<td>>38</td>
</tr>
</tbody>
</table>

LA volume obtained using biplane Simpson’s method.
Table 6 Right heart parameters.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>Indexed values</td>
<td></td>
</tr>
<tr>
<td>RVED area (cm²/m²)</td>
<td>≤13.6</td>
</tr>
<tr>
<td>RA area (cm²/m²)</td>
<td>≤11</td>
</tr>
<tr>
<td>Absolute values</td>
<td></td>
</tr>
<tr>
<td>RVOT proximal (mm)</td>
<td>24–44</td>
</tr>
<tr>
<td>RVOT distal (mm)</td>
<td>16–29</td>
</tr>
<tr>
<td>RVD1 (mm)</td>
<td>26–47</td>
</tr>
<tr>
<td>RVD2 (mm)</td>
<td>19–42</td>
</tr>
<tr>
<td>RVD3 (mm)</td>
<td>55–87</td>
</tr>
<tr>
<td>RA area (cm²)</td>
<td>≤22</td>
</tr>
<tr>
<td>Right heart function</td>
<td>≥30</td>
</tr>
<tr>
<td>FAC (%)</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>Indexed values</td>
<td></td>
</tr>
<tr>
<td>RVED area (cm²/m²)</td>
<td>≤12.6</td>
</tr>
<tr>
<td>RA area (cm²/m²)</td>
<td>≤11</td>
</tr>
<tr>
<td>Absolute values</td>
<td></td>
</tr>
<tr>
<td>RVOT proximal (mm)</td>
<td>20–42</td>
</tr>
<tr>
<td>RVOT distal (mm)</td>
<td>14–28</td>
</tr>
<tr>
<td>RVD1 (mm)</td>
<td>22–43</td>
</tr>
<tr>
<td>RVD2 (mm)</td>
<td>17–35</td>
</tr>
<tr>
<td>RVD3 (mm)</td>
<td>51–80</td>
</tr>
<tr>
<td>RA area (cm²)</td>
<td>≤19</td>
</tr>
<tr>
<td>Right heart function</td>
<td>≥35</td>
</tr>
<tr>
<td>FAC (%)</td>
<td></td>
</tr>
</tbody>
</table>

FAC, fractional area change; RA, right atrial; RVD1, right ventricular basal diameter in diastole; RVD2, right ventricular mid-point diameter in diastole; RVD3, right ventricular length in diastole; RVED, right ventricular end-diastolic area, obtained from the RV-optimised apical 4-chamber view; RVOT distal, right ventricular outflow tract at the level of the pulmonary valve from the parasternal short axis window; RVOT proximal, proximal right ventricular outflow tract obtained from the parasternal short axis view.

Table 7 Normal indexed aortic root dimensions.

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus of Valsalva (mm/m)</td>
<td>13.8–21.8</td>
<td>13.1–20.7</td>
</tr>
<tr>
<td>Sino-tubular junction (mm/m)</td>
<td>11.4–18.6</td>
<td>11.0–17.8</td>
</tr>
<tr>
<td>Proximal ascending aorta (mm/m)</td>
<td>11.5–19.9</td>
<td>11.4–19.8</td>
</tr>
</tbody>
</table>
Table 8 Normal indexed aortic root dimensions (leading edge-leading edge methodology).

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus of Valsalva (mm/m)</td>
<td>14.8–23.2</td>
<td>14.1–22.1</td>
</tr>
<tr>
<td>Sino-tubular junction (mm/m)</td>
<td>12.6–19.8</td>
<td>12.2–19.4</td>
</tr>
<tr>
<td>Proximal ascending aorta (mm/m)</td>
<td>12.6–21.4</td>
<td>12.3–21.1</td>
</tr>
</tbody>
</table>

Leading edge to leading edge methodology; indexed to height; obtained in end-diastole (onset of QRS). Proximal ascending aorta measures obtained 1 cm above the sino-tubular junction.

Table 9 Normal tissue Doppler parameters.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males and females</td>
<td></td>
</tr>
<tr>
<td>Mean mitral annular s’ (cm/s)</td>
<td></td>
</tr>
<tr>
<td>20–40 years</td>
<td>≥6.4</td>
</tr>
<tr>
<td>40–60 years</td>
<td>≥5.7</td>
</tr>
<tr>
<td>>60 years</td>
<td>≥4.9</td>
</tr>
<tr>
<td>RV s’ (cm/s)</td>
<td>≥9</td>
</tr>
<tr>
<td>All ages</td>
<td></td>
</tr>
</tbody>
</table>
Stress echocardiography
The service is led by Dr Khoo. Requests can be made using the generic cardiac imaging request form, the stress echo form or writing directly to the relevant consultant (Drs Ansari, Chelliah, Khoo or Sharaf). Factors that need to be borne in mind include the patient’s body habitus – do they have good enough echo windows? It is a time consuming expensive investigation and the clinical need should be appropriate. It is less well tolerated than MPS and is contraindicated in patients with VT and recent ACS (< 5 days).

It is useful for a variety of indications. If the ECG or exercise test is uninterpretable, or patients cannot exercise, a stress echo is good at detecting coronary disease in patients with symptoms suggestive of ischaemia. It is useful in patients with documented LV dysfunction where underlying coronary disease is suspected. In patients with known coronary disease stress echo can help determine whether lesions need attention in terms of viability or ischaemia. In patients with significant coronary calcification documented on CT, it can help determine whether this is associated with obstructive coronary disease. It is a good test for pre-operative risk assessment in cardiac patients undergoing non-cardiac surgery. It is helpful in the evaluation of patients with asymptomatic but severe aortic or mitral regurgitation in order to aid decisions to refer. Bicycle exercise echoes are also occasionally performed for assessment of dynamic LVOT obstruction or mitral regurgitation.

Sensitivity, specificity and accuracy are 80%, 84% and 80%. Sensitivity increases to 92% in three vessel disease. 74% in single vessel disease. For circumflex disease sensitivity is lower (55%).

Transoesophageal Echocardiography
Transoesophageal echocardiography (TOE) is invaluable when high-resolution cardiac imaging is required (e.g. significant valvular disease, suspected infective endocarditis, intracardiac tumours, cardiac source of emboli etc.). Requests for outpatient or urgent inpatient TOE should be made to the relevant cardiology consultant (Drs Ansari, Chelliah, Khoo, Sharaf or Singh) who will arrange the study. An ICE referral will be available during the lifetime of the handbook.

Patients on warfarin need their INR to be below 4-5. A blue referral form should be available in clinic.

Patients should be starved of fluids and solids for 4 hours pre-procedure.

Cardiac MRI (CMR)
The CMR service is provided by cardiologists and cardiac radiologists (see page 27). Requests can be made by consultants only, using the new combined imaging request form for stress CMR, or a generic radiology form for non-stress CMR. ICE referrals are also consultant only. To speed up patients being listed for inpatient scans contact the imaging cardiologist or radiologist directly.

CMR involves no radiation. It is a good test for viability and function but a stress CMR is required for ischaemia. Contraindications include 1. Certain implanted devices: pacemakers (although most new pacemakers are MRI-safe), cerebral clips and spinal stimulators; 2. Severe claustrophobia (sedation can be offered on some lists but needs to be clearly stated on request); 3. Severe asthma (for stress CMR as adenosine is the stressor used). Dobutamine stress can be employed in certain lists but needs to be clearly requested on referral; 4. High-degree AV block (contraindication to Adenosine); 5. eGFR <30 (risk of nephrogenic systemic fibrosis with Gadolinium contrast agent). Scans can take up to 45 minutes but with newer sequences can be done much faster. Patients need to abstain from caffeine for 24 hours if having adenosine stress CMR.
CMR is good at assessing cardiac function especially in assessment of patients with LV dysfunction and cardiomyopathies. It is good for excluding ventricular tumours and thrombus (not atrial). It is probably the best test for constrictive pericarditis. CMR immediately post infarct may overestimate non-viable myocardium and, in these circumstances, delaying the scan by about 7 days may be a better option.

The test is time consuming and expensive. Sensitivity is 91% and specificity 80% for the diagnosis of obstructive coronary disease. A normal scan is associated with a three year event rate of 2·3%.

Nuclear Cardiology (MPS)

Stress myoview scanning (MPS or SPECT) is a sensitive investigation for the detection of myocardial ischaemia. However it does involve a large exposure to radiation (9 mSv). Requests for myoview scans should be made using the appropriate form (green sheet), the new combined imaging request form or via ICE. All requests must be countersigned by a consultant. A recent chest X-ray should be available. Myoview scanning is rarely available on an urgent inpatient basis because of the need to order the necessary radioisotopes in preparation for the procedure. Patient’s weight must be documented. It is useful if patients are unable to exercise. The stressor agents are *adenosine* or *regadenoson* (patients with conditions such as asthma or significant arrhythmias may require prior discussion). Pulmonary function studies should be arranged in patients with known airways disease.

MPS require considerable post-processing and has many artefacts due to patient size, atrial fibrillation, LBBB etc. It can show fixed and reversible ischaemia but not viability. Sensitivity may be as low as 65%, specificity 61%. Diagnostic accuracy is reduced in obese patients because of attenuation from breast tissue or the diaphragm. Prognostic disease can be missed in the situation of balanced ischaemia (left main disease in a left-dominant system or three vessel disease). All scans are performed at GGH. Scans should not usually be performed within the first two to three months of an acute coronary event.

Given the radiation exposure and lower sensitivity, MPS should probably be reserved for older patients or those with contraindications to CMR or stress echo.

Patients referred for *adenosine* or *regadenoson* stress should abstain from caffeine. All requests must be countersigned by a consultant.

The weight limit for the D-SPECT camera (MPS) is 246kg for static imaging and 175kg for dynamic imaging.

Cardiac CT

Cardiac CT does not demonstrate ischaemia but CT coronary angiography (CTCA) is good for coronary and graft anatomy. The test requires a high specification scanner (> 64 slices) and often administration of IV β-blocker. Attempts should be made to ensure a resting heart rate below 60. Radiation dose is relatively low (3 - 5 mSv per scan). Good in low and intermediate probability disease but can overestimate stenoses. CT FFR is emerging as a more accurate method of assessing lesion severity. Excellent for assessing grafts and can be useful for left main stem imaging if there is no significant calcification. If combined with MPS has high specificity and sensitivity. CI: tachycardia, arrhythmia, eGFR < 30 ml/min, contrast allergy.

Coronary artery calcium (CAC) scoring (Agatston score) quantifies calcium in coronary arteries. It is now recommended as a first line test in low probability disease. A result of zero is associated with a 10 year survival rate of 99-4% in asymptomatic patients. A score of zero does not rule out coronary disease and consideration should be given to undertaking a CT coronary angiogram (CTCA).

In selected patients CT-FFR is performed to indicate if a lesion is likely to be flow limiting.
A negative CTCA for atheroma carries an annual all-cause mortality rate of 0.6%; those with non-obstructive atheroma have an event rate of 1.1% (3).

Radiation exposure with different diagnostic modalities:

<table>
<thead>
<tr>
<th>Diagnostic modality</th>
<th>Typical effective radiation dose (mSv)</th>
<th>Equivalent number of chest X-rays</th>
<th>Approximate equivalent period of natural background radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest (single PA film)</td>
<td>0.02</td>
<td>1</td>
<td>3 days</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electron-beam CT</td>
<td>1.5–2</td>
<td>75–100</td>
<td>7–9 months</td>
</tr>
<tr>
<td>Multi-slice CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium score</td>
<td>1.5–2.7</td>
<td>75–135</td>
<td>7–14 months</td>
</tr>
<tr>
<td>CTCA (16 slices)</td>
<td>6.5–10.7</td>
<td>325–535</td>
<td>2.7–4.4 years</td>
</tr>
<tr>
<td>CTCA s/p CAGB (16 slices)</td>
<td>12.9</td>
<td>645</td>
<td>5.3 years</td>
</tr>
<tr>
<td>CTCA (64 slices)</td>
<td>10.5</td>
<td>400</td>
<td>3 years</td>
</tr>
<tr>
<td>Magnetic resonance imaging</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Catheterisation laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic coronary study (Coronary angiography and ventriculography)</td>
<td>2.1–7</td>
<td>105–350</td>
<td>0.9–2.9 years</td>
</tr>
<tr>
<td>Angiography s/p CAGB</td>
<td>6.3</td>
<td>315</td>
<td>2.6 years</td>
</tr>
<tr>
<td>Aortography</td>
<td>4</td>
<td>200</td>
<td>1.6 years</td>
</tr>
<tr>
<td>Coronary angioplasty</td>
<td>7.5–57</td>
<td>375–2,850</td>
<td>3–23 years</td>
</tr>
<tr>
<td>Coronary stenting</td>
<td>10</td>
<td>500</td>
<td>4.1 years</td>
</tr>
<tr>
<td>Nuclear cardiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201Thallium-Cl (2 mCi)</td>
<td>17</td>
<td>850</td>
<td>7 years</td>
</tr>
<tr>
<td>99mTechnetium tetrofosmin (30 mCi)</td>
<td>8.5</td>
<td>425</td>
<td>3.5 years</td>
</tr>
<tr>
<td>99mTechnetium sestamibi (30 mCi)</td>
<td>8.9</td>
<td>445</td>
<td>3.7 years</td>
</tr>
<tr>
<td>Non-cardiology imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammogram</td>
<td>0.13</td>
<td>6</td>
<td>18 days</td>
</tr>
<tr>
<td>Barium enema</td>
<td>7.0</td>
<td>350</td>
<td>2.9 years</td>
</tr>
<tr>
<td>(10 images, 137 second fluoroscopy)</td>
<td>2.0</td>
<td>100</td>
<td>9 months</td>
</tr>
<tr>
<td>CT head</td>
<td>10</td>
<td>500</td>
<td>3 years</td>
</tr>
<tr>
<td>CT abdomen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear medicine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone (99mTc MDP) (20 mCi)</td>
<td>4.4</td>
<td>220</td>
<td>1.8 years</td>
</tr>
<tr>
<td>Lung perfusion/ventilation (64Cu MAA and 133Xe (5 & 10 mCi))</td>
<td>1.5</td>
<td>75</td>
<td>6 months</td>
</tr>
<tr>
<td>Kidney (99mTc DTPA) (20 mCi)</td>
<td>3.1</td>
<td>155</td>
<td>1 year</td>
</tr>
<tr>
<td>Tumour (18F Ga (3 mCi))</td>
<td>12.2</td>
<td>610</td>
<td>5 years</td>
</tr>
<tr>
<td>PET CT (18F FDG) (10 mCi)</td>
<td>5–25</td>
<td>250–1,250</td>
<td>2.3–11.5 years</td>
</tr>
</tbody>
</table>

Key: CA = coronary angiography; CAGB = coronary artery bypass graft; CT = computed tomography; DTPA = diethylenetriamine-pentaacetic acid; FDG = fluorodeoxyglucose; MAA = macroaggregated albumin; mCi = millicurie (radiopharmaceutical); MDP = methylene diphosphonate; PA = posterior-anterior; PET = positron emission tomography; s/p = status post
ANGIOGRAPHIC PROCEDURES

This is an invasive investigation involving a moderate radiation dose (~ 5 mSv or higher). It requires skill to perform and accurately interpret. It is the gold standard for investigation of coronary disease if performed well. The test can be combined with pressure wire studies for greater sensitivity. Patients need to be properly counselled and consented. The bulk of elective procedures can be performed as day cases. Patients DO NOT need to be starved of food beforehand and can stick to a normal diet. Encourage clear fluids right up until the procedure. Patients need to lay flat for anywhere up to a couple of hours for the procedure in complex cases, and their ability to do so must be ascertained before listing.

Standard blood tests are required including renal function, liver function, lipid profile and in appropriate patients, a coagulation profile. Platelet counts need to be above 50. If lower, haematology advice is required. These allow risk assessment for CIN and bleeding risk. A recent chest x-ray is sensible in the following circumstances: patient is a smoker / ex-smoker and has not had a CXR in last 12 months, pain could be musculoskeletal / atypical or if there are other specific reasons for a CXR.

Cardiac catheterisation involves aseptic placing of a sheath in one or more of the femoral or radial arteries under local anaesthetic. This can ultimately cause bleeding or bruising and, following femoral access, there is approximately a 0.7 per 1000 risk of significant damage requiring intervention/surgical repair. Manipulation of catheters may cause TIA’s or stroke and similarly can damage coronary arteries. For this reason patients will be required to consent for PCI and/or CABG at the time of cardiac catheterisation.

As a rule of thumb remember the following:

- Death 1 in 1000 (0.1%)
- Myocardial infarction 1 in 1000 (0.1%)
- Stroke 1 in 1000 (0.1%)
- Significant arterial complications 1 in 500 (0.2%), less if radial

It is worth explaining that the procedure may cause some palpitations, especially during LV angiography. In addition, patients may experience a hot flush about 10 seconds after the LV angiogram due to contrast being injected rapidly. They may also feel that they have urinated, but this is rarely the case. Various catheters are used to locate the coronary arteries. Patients do not usually feel the catheters being moved when performed femorally but can be uncomfortable during radial procedures. Many images are acquired, and this may involve the patient holding their breath at various times.

In outpatients, remember to explain that the groin needs to be shaved. Patients on warfarin need to stop it for 3 - 4 days beforehand (unless undergoing a radial angiogram where the procedure can be performed safely if the INR is < 3).

There is no need to stop metformin after contrast in patients with serum creatinine within the normal range and/or eGFR > 60 ml/min/1.73m². If the creatinine is above normal or the eGFR below 60, metformin should ideally not be taken for 48 hours afterwards (Royal College of Radiologists standards 2015).

After the procedure the patient will have the sheath removed. For femoral procedures, pressure will be applied to the groin for 20 - 30 minutes unless a special closure device has been employed. Patients should be advised to take only gentle activity for the rest of the day and cannot drive for 24 hours. If patients have received UFH during the procedure the sheath can be removed once the ACT is below 150 - 180 s. Many patients will have had a vascular closure.
device (for example: Angio-Seal™, ProGlide ®) employed following femoral access and they can be mobilised sooner.

The majority of angiograms (~80%) are performed via the radial artery. When listing in clinic, ensure the radials are palpable (sometimes radial arteries occlude following previous procedures). This will ensure only appropriate patients are listed for a ‘radial lounge’ procedure (ambulatory patients who do not require a bed or trolley). Mostly the right radial is employed. It is therefore important to generally place peripheral venous access catheters in the left arm but ideally check with the operator. Some radial procedures are performed from the left arm if the patient has a LIMA graft (getting to a LIMA from the right radial is challenging) or if the right radial is occluded. Most patients with previous grafts however will have a femoral procedure. In patients with ESRF access may have to be femoral if they have a fistula or if fistula construction is a probability in the future. In the vast majority of day cases IV access is obtained by the nursing staff. Doctors may however be called if IV access is difficult. It is imperative that you try to do this job without delay as failure to have working IV access can significantly delay a busy list and lead to patient cancellation. IV cannulae should ideally be 18G green, placed in the antecubital or brachiocephalic vein. A pink catheter is less good but an acceptable alternative in patients with difficult IV access. Avoid veins around the back of the hand or wrist as these will interfere with radial arterial access.

This radial route will obviously not result in groin (and exceedingly rarely retroperitoneal) complications. Placement of the radial arterial sheath is done under local anaesthetic and may be slightly uncomfortable. An injection of verapamil (2-5 mg) and isosorbide dinitrate (1 - 2 mg) is often given via the sheath to counter radial artery spasm and causes a transient burning sensation from the elbow to the hand. Following radial procedures, pressure is applied to the vessel for 2 - 3 hours, usually employing special splints (TR band). The lowest pressure required for haemostasis should be aimed for - employing a pulse oximeter on the hand will indicate if arterial flow is present along with haemostasis. This will reduce the risk of radial occlusion. If bleeding occurs, the splint should be reapplied. Patients undergoing radial angiography are administered 5000 U of UFH during the procedure to reduce the risk of radial artery thrombosis (risk ~ 3 - 5%).

Sometimes radial spasm can be so intense that the sheath cannot be removed with traction. Excessive force must NEVER be applied. If the radial ‘cocktail’ of verapamil and nitrate fails to relax the vessel, sedation usually works employing either diazepam or midazolam. Rarely a general anaesthetic may be required. Often simply waiting a while does the trick.

Post procedure the patient’s vascular access site needs to be checked to exclude significant bleeding or potential aneurysm development. Some patients may require imaging with ultrasound and occasionally CT if a retroperitoneal bleed is suspected (usually associated with hypotension). Patients with renal impairment should have their renal function checked post-procedure and potentially again after 72 hours.

Patients admitted with ACS who are at moderate or high risk should be considered for early in-patient angiography (< 72 hours) with a view to revascularisation. The procedure should be done more urgently if there is on-going angina especially if associated with dynamic ST-deviation, heart failure, life threatening arrhythmias, or haemodynamic instability.

Many elective as well as ACS patients will undergo PCI immediately following angiography. PCI involves catheters being positioned in the coronary artery ostia and fine wires being manipulated down the artery. A balloon is then passed to the site of the lesion and inflated. It is common to experience chest pain during PCI and there is a risk of about 1 in 500 that myocardial infarction may occur necessitating urgent CABG.

As a rule of thumb remember the following complication rates for PCI:
- Death < 1 in 500 (0.3%). UK average ~ 0.7%
- Myocardial infarction (usually minor) < 1 in 100 (< 1%)
- Stroke < 1 in 100 (< 1%)
- Emergency CABG 1 in 200 (< 0.5%) – GGH stats for last 10 years is 0.02%.
- Significant arterial complications 1 in 200 (0.5%)

Stent deployment

Most patients will have stents deployed to reduce the risk of restenosis. For elective, non-acute patients following bare metal stents (BMS), patients require treatment with clopidogrel (page 62) for 1 month, in addition to their usual medication. Bare metal stents are now employed rarely. In ACS clopidogrel, prasugrel or ticagrelor should ideally be administered for 12 months.

Drug-eluting stents (DES) reduce the risk of restenosis. The procedure is the same, but most patients need to be on dual antiplatelet therapy (DAPT) for longer than with BMS. Prasugrel (page 62) or ticagrelor (page 62) will be given in most PPCI cases and should also be prescribed for 12 months unless instructed otherwise. Ticagrelor will be used for most NSTEMI patients and should also be prescribed for 12 months. For elective PCI employing DES, duration of DAPT may be 1 - 6 months dependent upon the preferences of the operator and stent employed. Some latest generation stents are licensed for only 4 weeks DAPT.

Employing DAPT exposes the patient to a higher risk of bleeding and concomitant use of a PPI should be seriously considered particularly in those at higher risk (elderly, diabetic, hypertensive, renal impairment, prior bleeding). There are DAPT risk calculators available (DAPT Risk calculator and Precise DAPT) – see page 18.

In patients with thrombocytopenia DAPT can be used as long as the platelet count is > 40-50 and there are no mucocutaneous bleeding symptoms. For lower platelet counts haematology advice is needed.

Some patients will be established already on either warfarin or a DOAC. Special consideration of duration of DAPT is required in this situation and a PPI is essentially mandatory. See page 73.

Bare metal stents include Vision™, Driver™, Integrity™, Coroflex™ and Integrity™. Drug-eluting stents include Xience Sierra or Alpine™, Biomatrix Flex™, Resolute Onyx™,
Ultimaster™, Synergy™ and Promus Premier™. Names are constantly evolving and changing and some of these stents will no longer be employed but may have been used historically.

In some cases drug-coated balloons only are employed (DEB or DCB) such as Agent™ or BioStream™.

Pressure wire studies are undertaken when visually lesions appear borderline severe and may or may not require intervention. This entails passing a wire down the artery which then measures blood pressure distal to a stenosis and aortic pressure.

Fractional flow reserve (FFR) measurement involves determining the ratio between the maximum achievable blood flow in a diseased coronary artery and the theoretical maximum flow in a normal coronary artery. An FFR of 1.0 is widely accepted as normal. An FFR lower than 0.80 is generally considered to be associated with myocardial ischaemia. If the FFR is greater than 0.80 the patient is administered adenosine to induce hyperaemia and if the FFR subsequently falls below 0.8 the lesion is deemed flow limiting.

More recently resting full-cycle ratio (RFR) is measured which avoids the need to induce hyperaemia with adenosine. When RFR is ≤ 0.89 PCI may be beneficial. When RFR is ≥ 0.89, deferral of PCI may be beneficial.

Variations of the theme of PCI include rotablation; this involves a high speed drill bit being placed against very hard coronary lesions. The patient should be warned of the noise (like a dentist’s drill). Intravascular lithotripsy using a ‘Shockwave’ catheter is also employed in a small number of cases – a technology which uses pulsatile sonic pressure waves to deal with calcified lesions.

It is sensible to remind patients that they may be subsequently better served with bypass surgery and so may not undergo PCI at the same sitting.

Ensure patients have been consented prior to listing. Ensure patients who may undergo PCI are established on aspirin and clopidogrel, prasugrel or ticagrelor employing the usual loading doses as outlined later (page 85). If patients have been treated with enoxaparin the latter does not need to be discontinued for the procedure. Additional UFH does NOT need to be administered in the cath lab for the benefit of PCI if the last dose of enoxaparin was given within 6 hours. After 6 hours an additional 0.3 mg/kg IV can be given. Check with the operator.

If the patient has significant co-morbidities these should be discussed with the operator beforehand. If patients have had previous procedures (especially CABG) every effort should be made to get hold of the details.

Patients and doctors should be aware of the potential impact of contrast media on renal function. In patients approaching end-stage renal failure, procedures should be performed in close liaison with the renal unit in case dialysis support is required. In patients who dialyse already, arrangements need to be made for early haemodialysis following the procedure. Patients on CAPD should bring their own exchange bags and warmers.
Coronary anatomy

It is worth familiarising yourself with the basic coronary anatomy – in this (more common) example of right coronary dominance (Image from Syntax).

Right coronary artery

<table>
<thead>
<tr>
<th>Artery</th>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal</td>
<td>1</td>
</tr>
<tr>
<td>Mid</td>
<td>2</td>
</tr>
<tr>
<td>Distal</td>
<td>3</td>
</tr>
<tr>
<td>Posterior descending</td>
<td>4</td>
</tr>
<tr>
<td>Posterolateral from RCA</td>
<td>16</td>
</tr>
<tr>
<td>Posterolateral from RCA 16a</td>
<td></td>
</tr>
<tr>
<td>Posterolateral from RCA 16b</td>
<td></td>
</tr>
<tr>
<td>Posterolateral from RCA 16c</td>
<td></td>
</tr>
</tbody>
</table>

Left coronary artery

<table>
<thead>
<tr>
<th>Artery</th>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left main</td>
<td>5</td>
</tr>
<tr>
<td>Proximal LAD</td>
<td>6</td>
</tr>
<tr>
<td>Mid LAD</td>
<td>7</td>
</tr>
<tr>
<td>Apical LAD</td>
<td>8</td>
</tr>
<tr>
<td>First diagonal</td>
<td>9</td>
</tr>
<tr>
<td>Additional first diagonal</td>
<td>9a</td>
</tr>
<tr>
<td>Second diagonal</td>
<td>10</td>
</tr>
<tr>
<td>Additional second diagonal</td>
<td>10a</td>
</tr>
<tr>
<td>Proximal circumflex</td>
<td>11</td>
</tr>
<tr>
<td>Intermediate</td>
<td>12</td>
</tr>
<tr>
<td>Obtuse marginal</td>
<td>12a</td>
</tr>
<tr>
<td>Obtuse marginal</td>
<td>12b</td>
</tr>
<tr>
<td>Distal circumflex</td>
<td>13</td>
</tr>
<tr>
<td>Left posterolateral</td>
<td>14</td>
</tr>
<tr>
<td>Left posterolateral</td>
<td>14a</td>
</tr>
<tr>
<td>Left posterolateral</td>
<td>14b</td>
</tr>
</tbody>
</table>

POST CATHETER COMPLICATIONS

Hypotension following angiographic procedures has a number of potential causes. Prompt diagnosis and treatment is vital.

Vasovagal reaction. This is common following femoral sheath removal but can occur at any time. It is predisposed by intravascular volume depletion. Symptoms include nausea, light-headedness and on occasion syncope with pallor, bradycardia (or more rarely tachycardia) and hypotension. Vasovagal reaction is essentially a diagnosis of exclusion and it is crucial to consider and specifically exclude other causes of hypotension, especially if the BP drop persists despite treatment. Initial measures include IV fluid bolus, ideally via a large bore IV cannula, placing the patient in the Trendelenburg (head down) position and possibly IV atropine 0.6 - 3 mg. It is important to have someone pressing over the femoral puncture site during this time in case of femoral access site bleeding. Have a high index of suspicion of active bleeding.
Anything other than very brief self-terminating vagal reactions must be discussed with the operator/SpR.

Haemorrhage. Most common from femoral arterial access and can be superficial and local into the subcutaneous tissue of the groin, or concealed intra-abdominal/retro-peritoneal bleeding. Signs include femoral haematoma in the former case and may be absent in the latter case of retro-peritoneal (RP) bleed. RP bleeding may present as cardiovascular collapse with or without an abdominal (usually RIF) mass. RP bleed is potentially life-threatening and must be confirmed by an urgent CT abdomen after IV fluid resuscitation. **Continued uninterrupted pressure must be applied over the access site and liaison with blood bank as directed by the operator ensured. DO NOT STOP ANTIPLATELETS without consultant advice due to the risk of fatal stent thrombosis.** Emergency vascular surgery may be needed.

False aneurysms develop when a hematoma maintains continuity with the arterial lumen. The incidence is between 0·5 - 2·0% after diagnostic angiography and has been reported in as many as 7·7% following PCI. Suspicion should be raised if there is a pulsatile mass and bruit. Immediate scanning with ultrasound is diagnostic and allows the interventional radiologist to inject thrombin and thrombose the aneurysm. In a small number, vascular surgery may be required. Arteriovenous fistulas can also occur and are mostly managed conservatively.

Cardiac tamponade. An uncommon but recognised complication of cardiac catheterisation, and in particular of PCI. Delayed (> 30 minutes post procedure) tamponade can occur as the result of micro-perforation of a coronary artery during the procedure, often by the angioplasty guide wire. Symptoms may be initially insidious prior to cardiovascular collapse and include chest pain, (atrial) tachyarrhythmias and relative hypotension. Classical signs (i.e. Beck’s triad of raised JVP, muffled heart sounds and hypotension) are rarely relevant to acute procedural tamponade. The key message is that this diagnosis must be considered in any hypotensive patient post cardiac procedure and specifically excluded by an urgent bedside echocardiogram if suspected. Liaise with seniors as prompt treatment may be lifesaving (see page 99).

Access site complications. Most femoral sheaths are removed by nursing staff or an SpR but you should endeavour to at least observe this process early on in the job. Sheaths are only pulled when the activated clotting time (ACT) is < 150 -180 s in heparinised patients. Severe systolic hypertension (e.g. BP > 180 systolic) should ideally be treated prior to pulling the sheath - often this is a matter of giving mild sedation and should be discussed with seniors. Ask the SpR for advice on how to pull sheaths if unclear. Femoral arterial sheath sizes (French size) refer to internal diameter where French size divided by 3 gives the internal diameter in millimetres. Femoral arterial punctures require at least 10 - 15 minutes firm digital pressure using 2 fingers 2 - 3 cm proximal to skin puncture in line with the arterial impulse to achieve haemostasis. Sometimes prolonged pressure is required and is the first thing to do in expanding haematomas.

Nursing staff are adept at dealing with minor superficial groin haematomas. Liaise with seniors as to whether these patients can go home or need overnight stay. Common sense prevails and a proportion of tender groin haematomas will overlie a femoral arterial pseudo-aneurysm. Thus very tender groin lumps or those with a prominent expansile impulse require ultrasound scanning prior to discharge and may require thrombin sclerotherapy to resolve the false aneurysm. This is performed by radiologists.

Radial access is associated with dramatically fewer serious access site bleeds. The most common closure device is the ‘trans-radial’ or ‘TR’ band which is deflated by the nurses according to protocol. This is generally effective, but sometimes a forearm haematoma may develop which can rarely lead to a forearm compartment syndrome. As ever, the operator must be immediately informed but first-aid involves elevating the arm and application of firm pressure over the forearm. A manual sphygmomanometer cuff inflated to 15 mm Hg below systolic
pressure for 5-10 minutes at a time has been advocated. Elevated blood pressure should be treated. These are temporising measures pending vascular review if things fail to improve.

Chest pain. Very common following PCI. The key is to obtain ECGs every 15 - 30 minutes while the patient is in pain and to liaise early with the operator who has knowledge of the procedure and anatomy to help guide management. In general a subsiding mild ‘bruised’ sensation for up to an hour post PCI with no major ECG ischaemia is common and a consequence of procedural angioplasty-induced transient ischaemia. Progressive, recurrent or sudden angina with or without ECG changes is a cause for concern and should be discussed urgently. Opiate analgesia with anti-emetic should be given IV for severe ischaemic pain in the absence of contra-indications.

Stroke/TIA. Fortunately uncommon but may occur during or shortly after cardiac catheterisation. Detailed imaging studies suggest the rate is 0·1-0·6% (and asymptomatic brain infarcts as high as 8%). Any new focal neurological deficit will require an urgent CT brain scan or MRI. The majority of events are embolic TIAs but will necessitate a period of in-patient investigation. Major intra-cerebral haemorrhage is rare.

Cases should be discussed with the on call stroke team (consultant or SpR) at LRI. For ischaemic stroke, thrombolysis may be an option within the first 4 - 5 hours. Other embolic phenomena can occur due to cholesterol embolisation.

Contrast Induced Nephropathy (CIN). Patients with pre-existing renal impairment (eGFR < 60) are clearly at higher risk of developing CIN but other factors increase the risk as well: hypotension, CCF, Age > 70, previous renal transplant, nephrotoxic drugs, anaemia, diabetes, IABP use. In addition, the higher the volume of contrast used increases the risk. The Mehran Risk Score can determine the likelihood of CIN and has been recently validated (see Table 1, page 46). Excel based calculators are loaded on the cath lab PCs and web based calculators are also available (as are apps): https://renalguard.com/risk-calculators/

In patients with increased risk, ensure drugs like NSAIDs are stopped 48 hours prior to contrast exposure. To further reduce the risk of CIN patients at high risk should receive hydration. For most procedures patients should be encouraged to continue drinking clear fluids until the procedure to maintain good hydration. For general hydration, if concerned fluid intake has been poor use 0-9% sodium chloride.

The role of sodium bicarbonate as an alternative to 0-9% sodium chloride remains uncertain (1·4% sodium bicarbonate run at 3 ml/kg/hr for one hour prior to the procedure and continuing at 0·93 ml/kg/hr for six hours post-procedure. There is some evidence that the short-term use of high-dose high-intensity statins reduce the risk of CIN: rosvastatin 20-40 mg OD or atorvastatin 80 mg OD.

Low or iso-osmolar iodinated contrast medium should be used in patients with risk factors for developing CIN.

Check serum creatinine after 48 hours. If no more than 25% above baseline, restart any withheld medications. If creatinine increases > 25% from baseline, continue withholding drugs and recheck in a further 24 hrs. If creatinine increases > 50% from baseline, discuss with renal SpR on call.

Table 1: Mehran risk score to determine likelihood of CIN.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension (< 80 mmHg)</td>
<td>5</td>
</tr>
<tr>
<td>IABP</td>
<td>5</td>
</tr>
<tr>
<td>CCF</td>
<td>5</td>
</tr>
<tr>
<td>Age > 75</td>
<td>4</td>
</tr>
</tbody>
</table>
Anaemia 3
Diabetes 3
Contrast Volume 1 for each 100 ml
eGFR 40 - 60 2
20 - 40 4
< 20 6

<table>
<thead>
<tr>
<th>Score</th>
<th>Risk of CIN</th>
<th>Risk of Dialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5</td>
<td>7.5%</td>
<td>0.04%</td>
</tr>
<tr>
<td>6 - 10</td>
<td>14%</td>
<td>0.12%</td>
</tr>
<tr>
<td>11 - 16</td>
<td>26.1%</td>
<td>1.09%</td>
</tr>
<tr>
<td>≥ 16</td>
<td>57.3%</td>
<td>12.6%</td>
</tr>
</tbody>
</table>

BCIS recommends staging of acute kidney injury after contrast.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Serum creatinine (Cr) criteria</th>
<th>Urine output criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Increase ≥ 26 μmol/L within 48hrs or increase ≥ 1.5- to 1.9 X baseline Cr</td>
<td>< 0.5 ml/kg/hr for > 6 consecutive hrs</td>
</tr>
<tr>
<td>2</td>
<td>Increase ≥ 2 to 2.9 X baseline Cr</td>
<td>< 0.5 ml/kg/hr for > 12 hrs</td>
</tr>
<tr>
<td>3</td>
<td>Increase ≥ 3 X baseline Cr or * increase 354 μmol/L or commenced on renal replacement therapy (RRT) irrespective of stage</td>
<td>< 0.3 ml/kg/hr for > 24 hrs or anuria for 12 hrs</td>
</tr>
</tbody>
</table>

Non-allergic contrast reactions. A diagnosis of exclusion. X-ray contrast is hyperosmolar and cerebral fluid shift is thought to be responsible for vasoactive mediated neurological symptoms which range from minor visual symptoms (similar to migraine aura) to symptoms mimicking CVA. Usually self-limiting but firm neurological signs need to be investigated urgently.

Anaphylaxis. Consider anaphylaxis in refractory hypotension, especially if there is wheeze/rash. This is most commonly due to IV contrast. Discuss urgently with seniors prior to commencing treatment. For mild reactions (hives, urticaria) consider *chlorpheniramine* 10 - 20 mg IV slowly over 1 minute. For more severe urticaria, *chlorpheniramine* 10 - 20 mg IV slowly over 1 minute and consider *adrenaline* 1:1,000, give 0.1 - 0.3 ml IM.

In patients with known contrast allergy, prevention with medication is not proven to be of benefit. Use of non-ionic low or iso-osmolar contrast is advised. In very high risk patients consideration can be given to administering *hydrocortisone* 200 mg and *chlorpheniramine* 10 - 20 mg IV slowly over 1 minute.
Emergency treatment of anaphylaxis includes administration of adrenaline 1:1000 0.5 mg IM which may need to be given more than once along with IV fluids. Oxygen should be given and the crash team called.

DEVICE PROCEDURES

Pacemakers and defibrillators are usually implanted in the region of the deltopectoral groove of the non-dominant shoulder. The procedures are performed aseptically under light sedation employing local anaesthesia. Occasionally patients will require general anaesthetic, particularly patients who are listed for lead extraction.

Patients having a pacemaker (not leadless) or device box change need to be starved of food 4 hours beforehand but can take clear fluids up until 2 hours before the procedure. For ICD / SICD, CRTD / P, leadless pacemakers and lead changes - patients should be starved of food for 4 hours beforehand and fluids 2 hours beforehand.

Pacemaker procedures last approximately 40 - 90 minutes. Biventricular devices may take considerably longer to implant. There is a small risk (1:50) of a pneumothorax; often these do not require drainage. Early haematomas requiring drainage/re-do amount to approximately 1 per 100. Lead displacement may occur in the first few weeks requiring re-positioning. Infection may occur any time in the first few months, rarely later. There is a small risk of tamponade and this should be considered urgently as a differential if the patient has any suggestive symptoms or signs.

Some patients may undergo implantation of a leadless pacemaker (Micra) device. These are small self-contained units (with no leads) which are usually implanted via the right femoral vein into the right ventricle. Haemostasis in the groin is usually achieved with a 'Z' suture which should be removed prior to patient discharge.

Patients on anticoagulant therapy should usually either have their anticoagulants stopped or have their INR (on warfarin) adjusted to 1.8 – 2.0. Check with the operator. While patients are waiting for their pacemaker implant, the area under the collar bones should be kept clean and free from ECG electrodes. Most operators prefer a green or at least pink venous catheter in the left antecubital fossa, with a long extension line connected. This is to allow a venogram to be performed if there is difficulty in venous access. All patients should have a set of recent blood tests especially FBC, U&E, clotting and CRP. If the patient has signs or symptoms of underlying sepsis, this should be fully treated before implanting the pacemaker.

Antibiotics are administered pre- and post-procedure. Standard regimen: flucloxacillin 1 g IV and gentamicin IV 120 mg followed by three further doses of flucloxacillin PO 500 mg at 6 hourly intervals. For patients with known or previous MRSA: teicoplanin IV 400 mg and gentamicin IV 120 mg. For penicillin allergic patients: teicoplanin IV 400 mg and gentamicin IV 120 mg.

A chest X-ray is required post-implant to confirm lead position and exclude a pneumothorax (not seen after cephalic access only implants). You will be required to review the CXR prior to the patient’s discharge. If you are unsure about the pacemaker lead positions, consult a senior to ensure that they are appropriate. Pacing checks will be done prior to discharge and at 1 month. Additional checks and device manipulation may be required with defibrillators and biventricular devices. Please check the procedure report for any additional instructions, such as instructions regarding anticoagulation or change in medication (such as recommencing rate-limiting drugs in patients with tachycardia-bradycardia syndromes).

EP PROCEDURES

Patients undergoing simple diagnostic EP procedures should be prepared in much the same way as those undergoing angiography. Although the risks of groin complications are lower,
there is still a risk. Patients should be advised of the risk of palpitations and possible syncope during the procedure.

Patients should be starved of food for 4 hours beforehand and fluids for 2 hours.

For patients undergoing ablation procedures the risks of complications should be discussed. Simple ablation is normally a day case procedure. Patients may need an overnight stay, depending on when the procedure finishes, and have adult accompaniment when discharged. Access is usually via the right groin and ablation normally performed on the right side of the heart.

Post procedure check there is no bruit and look for a haematoma. If there are any concerns, consider an ultrasound of the groin. There is also risk of heart block, so check an ECG post ablation for any changes from pre-procedure. Some patients have ablation on the left side via the aorta, patent foramen ovale or trans-septal approach. Some will require an overnight stay but many are now performed as day case procedures. In these patients an echocardiogram will be required to confirm there is no pericardial effusion. Also there is a risk of thromboembolism - therefore antiplatelets will be required in most patients treated with ablation unless already anticoagulated. Haemostasis in the groin is usually achieved with a ‘Z’ suture which should be removed prior to patient discharge.

Most patients will have had ablation for atrial fibrillation and flutter. However ablation for VT, atrial tachycardia and patients with adult congenital heart disease fall in the category of complex ablation. The care is the same as for simple ablation but consider these issues:

Blood pressure may fall due to sedation but also rule out pericardial effusion as a cause. Also vascular tear or injury and retroperitoneal bleed may have to be investigated with USS of the groin or CT of the abdomen. Dizziness can be due to dehydration and sedation, but think of stroke.

A post discharge plan should be written in the procedure report. All patients undergoing a complex ablation procedure or left-sided procedure must have an echo pre-discharge to exclude an effusion. Post procedure anti-arrhythmics are usually continued for 3 months after AF ablation.

Patients undergoing an AF ablation are usually anticoagulated prior to the procedure with warfarin or a DOAC with the procedure carried out with a therapeutic INR (2.5 - 3.5). The warfarin should be continued uninterrupted. There is a significant increased risk of thromboembolic stroke in the period immediately following AF ablation and it is therefore vital that anticoagulation is not withheld unless there is a life-threatening bleed. These patients should be discussed with the relevant consultant involved in the patient’s care. Increasingly, patients will be undergoing AF ablation with the use of direct oral anticoagulants: DOACs, also referred to as novel (NOACs) oral anticoagulants: (Dabigatran, Rivaroxaban, Apixaban, Edoxaban). There should be clear instructions in the patient's notes if/when the DOAC should be withheld prior to the procedure and if/when it should be recommenced after the procedure. In this case the drug is usually stopped the day before the procedure and must be restarted on the evening of the procedure. As experience with ablation in patients taking DOACs increases, these procedures are increasingly being undertaken with uninterrupted DOACs.

Again check the plan in the notes and if any problems contact the consultant in charge.

INTRA-AORTIC BALLOON PUMP (IABP) COUNTERPULSATION

An IABP is a circulatory assist device used in haemodynamically unstable patients. Indications include severe refractory ischaemia, hypotension (systolic blood pressure less than 90 mmHg or 30 mmHg below baseline mean arterial pressure) of cardiac origin that is not responsive to
other interventions; cardiogenic shock that is not quickly reversed with pharmacologic therapy; acute mitral regurgitation, particularly due to papillary muscle rupture, or ventricular septal rupture. Occasionally it is used in patients with refractory VT/VF.

The contraindications to IABP are: moderate to severe aortic regurgitation; aortic dissection; aortic stent; end-stage cardiac disease with no viable other treatment options; bilateral femoral-popliteal bypass grafts. Relative contraindications: uncontrolled sepsis; abdominal aortic aneurysm; severe bilateral peripheral vascular disease; uncontrolled bleeding disorder; prosthetic iliofemoral grafts/iliac artery stents.

The device is passed via a femoral artery (preferably sheathless). The distal tip is positioned 1 - 2 cm distal to the origin of the left subclavian artery or at the level of the carina. The usual size of the balloon for an adult patient is between 25 cc (for patients < 5 feet tall) to 50 cc (for patients > 6 feet tall) but individual manufacturer’s guidance should be followed. Patients are bed-bound and can be nursed to a maximum elevation of 30°.

Pumping is initiated and controlled by a console using input from both the aortic pressure and the ECG. Inflation occurs immediately after aortic valve closure and deflation just before aortic valve opening. Inflation and deflation of the balloon has two major consequences:

- Blood is displaced to the proximal aorta by inflation during diastole.
- Aortic volume (and thus afterload) is reduced during systole through a vacuum effect created by rapid balloon deflation.

Common and potentially life threatening complications include: limb and renal ischaemia; vascular laceration necessitating surgical repair; major haemorrhage; and cerebrovascular accident. Rapid inflation and deflation of the balloon causes trauma to red blood cells and platelets, commonly resulting in anaemia and/or thrombocytopenia. A FBC should be performed daily. Device related thrombus formation and subsequent embolisation are also significant risks. Because of these factors, patients with an IABP in situ are usually systemically anticoagulated, resulting in an increased risk of bleeding at the insertion site. Most patients will be anticoagulated employing UFH.

Deterioration in renal function may be due to distal migration of the catheter and this should be considered (and fluoroscopic screening arranged if necessary). Close monitoring of the peripheral pulses is mandatory (left arm and lower limbs).

Successful weaning from the IABP requires the patient to not be in cardiogenic shock and to have an adequate blood pressure whilst on little or no inotropic support. Reasonable target values to aim for prior to weaning are a mean arterial pressure of 65 mmHg. IABP counterpulsation is usually weaned by reducing the ratio of augmented to non-augmented beats. This can be done by reducing the augmentation frequency every 1 - 6 hours, from ratios of 1:1 to 1:2 to 1:3. If a ratio of 1:3 is tolerated for 6 hours then the device should be put into standby and removed without delay. The balloon should never be left in standby mode for more than 20 minutes because of the risk of thrombus formation on the balloon. Most patients will be anticoagulated employing UFH.

TAVI PROCEDURES AND OTHER “STRUCTURAL” INTERVENTIONS

Transcatheter aortic valve implantation (TAVI) is predominantly carried out for elderly patients with severe aortic stenosis and significant comorbidities. Mortality rate is 1 - 2%, stroke risk 1-2%, vascular complications 3 - 5%, pericardial tamponade 0-2 – 4-3%, aortic rupture < 1 %, valve embolisation 1%, conversion to open heart surgery 1%, requirement for pacemaker post TAVI 5 - 40% (depending on type of valve – greater with self-expanding prostheses). There are additional risks which will be discussed in detail with patients by the TAVI team during the consent process. TAVI can only go ahead for patients who have:
1. Symptomatic severe aortic stenosis.
2. Been turned down by a surgeon for surgical valve replacement.
3. Feasible access routes to implant the valve and valve/annulus size within range of available prostheses.
4. Been accepted after consideration by the TAVI MDT.

The most common TAVI access route is trans-femoral, for which there needs to be a relatively disease free channel along the femorals, iliacs, and aorta, with femoral artery diameter at least 5 mm, sometimes more. TAVI cannot be carried out if the aortic annulus is < 18 mm or > 30 mm, although oval shaped annuli with one axis slightly outside the range can be considered. The trans-apical, trans-axillary, and direct aortic routes are alternative options. Almost all patients will have had a CT aortogram (“TAVI protocol”) plus coronary +/- peripheral angiography. In exceptional cases when CT is contraindicated (renal function) patients will have sizing done by 3D transoesophageal echocardiography either prior to procedural hospitalisation or peri-procedurally. All investigations should have been completed prior to admission for elective but a proportion of cases with severe aortic stenosis have TAVI during their index admission.

Regardless of the type of TAVI procedure, patients should be starved for at least 6 hours and no fluids for 3-4 hours.

It is important to determine from the records whether the patient is to have the procedure via a trans-femoral, subclavian, trans-apical, or trans-aortic approach as clearly the consent procedure is different. Pre-procedure FBC, clotting screen, biochemistry, and cross match (4 units) are required. Patients taking warfarin will need to discontinue 3 days prior to the procedure if taking it for atrial fibrillation unless otherwise specified. Antibiotics are required pre-procedure: flucloxacillin 1 g IV and gentamicin IV 120 mg followed by three further doses of flucloxacillin PO 500 mg at 6 hourly intervals. For patients with known or previous MRSA: teicoplanin IV 400 mg and gentamicin IV 120 mg. For penicillin allergic patients: teicoplanin IV 400 mg and gentamicin IV 120 mg.

Most patients will also have aspirin for a period of time (3 – 6 months). If a patient is on anticoagulant beforehand (i.e. warfarin or DOAC for AF, or warfarin for existing mitral prosthesis for example), they do not need to start antiplatelets and simply continue with their anticoagulant.

Following the procedure patients must be assessed carefully for signs of complications. ECG monitoring is mandatory and patients need to be considered for permanent pacing if there is development of new LBBB (if associated bradycardia) or AV node block. In general terms, balloon expandable valves and non-metallic valves have a lower rate of permanent pacing requirements (Edwards Sapien), while Evolut Corevalve and Lotus valve rates are higher. Monitoring/telemetry of patient on the ward is typically for 1 - 2 days to make a decision if the patient requires permanent pacing or not.

An echocardiogram is usually performed immediately after the procedure but sometimes needs to be repeated pre-discharge. Typical follow up is around 6-8 weeks after implant and then annually in the valve or general clinic.

In addition to TAVI, interventions such as balloon aortic valvuloplasty (BAV), balloon mitral valvuloplasty or other mitral valve interventions (MitraClip), left atrial appendage occlusion,
inter-atrial septal defect closure, PFO closure and prosthetic valve paravalvular leak closure are carried out in this unit. A small number of patients have a TAVI in the mitral valve position.

These will be dealt with on a case by case basis by members of the structural team (Kovac, Khoo, Roberts, Adlam, Banning), who will make investigation and treatment plans clear to ward teams. To refer to the TAVI MDT or for specific information about TAVI or structural intervention patients, phone or email Di Baker (ext 3358) or Kelly Moore, secretary to Professor Kovac and Dr Roberts (ext 2780). Our TAVI specialist nurse is Reji Paulgi.
ACUTE CORONARY SYNDROMES

Definitions

The categorisation of acute coronary syndromes (ACS) underwent substantial changes in the late 1990s, largely as a result of the introduction of Troponin testing. Troponin I and T are proteins found in cardiac myocytes and even a small amount of myocardial necrosis can lead to a significant elevation in circulating blood levels. High sensitivity Troponin I (hs-TnI) is used in UHL. Detection of an elevated hs-TnI above the 99th percentile upper reference limit is defined as myocardial injury and is considered acute if there is a rise and/or fall.

The latest universal classification of myocardial infarction was published in 2018 and is as follows:

Type 1: Spontaneous myocardial infarction: Spontaneous myocardial infarction related to atherosclerotic plaque rupture, ulceration, fissuring, erosion, or dissection with resulting intraluminal thrombus in one or more of the coronary arteries leading to decreased myocardial blood flow or distal platelet emboli with ensuing myocyte necrosis. The patient may have underlying severe coronary artery disease (CAD) but on occasion non-obstructive or no CAD: myocardial infarction with non-obstructive coronary arteries (MINOCA).

Type 2: Myocardial infarction secondary to an ischaemic imbalance: In instances of myocardial injury with necrosis where a condition other than CAD contributes to an imbalance between myocardial oxygen supply and/or demand. For example but not an exhaustive list: coronary endothelial dysfunction, coronary artery spasm, coronary embolism, tachy/brady-arrhythmias, severe anaemia, respiratory failure, hypotension, pulmonary embolism, sepsis syndrome, and hypertension with or without LVH.

Type 3: Myocardial infarction resulting in death when biomarkers are unavailable: Cardiac death with symptoms suggestive of myocardial ischaemia and presumed new ischaemic ECG changes (or new LBBB) or VF, but death occurring before blood samples could be obtained, before cardiac biomarker could rise, or in rare cases cardiac biomarkers were not collected.

Type 4a: Myocardial infarction related to percutaneous coronary intervention: Myocardial infarction associated with PCI is arbitrarily defined by elevation of hs-TnI values > 5 times 99th percentile of upper reference limit in patients with normal baseline values (≥ 99th percentile upper reference limit) or a rise of hs-TnI values > 20% if the baseline values are elevated and are stable or falling. In addition, either

(i) Symptoms suggestive of myocardial ischaemia or
(ii) New ischaemic ECG changes or new LBBB or
(iii) Angiographic loss of patency of a major coronary artery or a side branch or persistent slow or no-flow or embolisation or
(iv) Imaging demonstration of new loss of viable myocardium or new regional wall motion abnormality.

Type 4b: Myocardial infarction related to stent thrombosis: Myocardial infarction associated with stent thrombosis is detected by coronary angiography or autopsy in the setting of myocardial ischaemia and with a rise and/or fall of cardiac biomarkers values with at least one value above the 99th percentile upper reference limit.

Type 4c: Restenosis associated with PCI:

Occasionally MI occurs and at angiography, in-stent restenosis, or restenosis following balloon angioplasty in the infarct territory is the only angiographic explanation since no other culprit lesion or thrombus can be identified.
Type 5: Myocardial infarction related to coronary artery bypass grafting: Myocardial infarction associated with CABG is arbitrarily defined by elevation of cardiac biomarker values >10 times 99th percentile upper reference limit in patients with normal baseline hs-TnI values (≥ 99th percentile upper reference limit). In addition, either:

(i) New pathological Q waves or new LBBB or
(ii) Angiographic documented new graft or new native coronary artery occlusion or
(iii) Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality.

Cardiac Enzymes

Elevation of hs-TnI strongly suggests myocardial necrosis. Hs-TnI levels begin to rise 2 to 3 hours after myocardial damage and stay elevated for up to two weeks. CK should also be measured in STEMI patients.

Hs-TnI levels less than 5ng/L for suggests a very low likelihood of myocardial necrosis.

Hs-TnI levels greater than 100ng/L for suggests a high likelihood of myocardial necrosis.

Rising and/or falling cardiac troponin levels differentiate acute from chronic cardiomyocyte damage (the more pronounced the change, the higher the likelihood of acute MI). A change greater than 3ng/L may indicate ACS. The greater and more rapid the change occurs, the more likely the patient may have an MI.

Only one hs-TnI level is required if the onset of symptoms was 2 or more hours previously. If there is uncertainty, a further sample can be taken a further 2 hours later. Second hs-TnI levels can be useful to assess whether the elevation is static, rising or falling.

Hs-TnI assays in UHL allow for earlier measurement rather than old regime of relying on the 12 hour hs-TnI. Several studies have shown that earlier sampling allows for earlier diagnosis or exclusion of acute coronary syndromes. Clinical judgment must still apply and a normal hs-TnI series should not always result in automatic discharge.

Hs-TnI should be assessed in patients with typical ischaemic symptoms in the setting of ST depression, T wave inversion or even a normal ECG. Hs-TnI can also be useful in LBBB or paced ECGs when doubt exists as to whether there has been an ischaemic event. Measurement of hs-TnI should be restricted to appropriate patients, and specifically when an acute coronary syndrome is suspected. It is not appropriate to use hs-TnI as a ‘rule out ischaemia’ test.

It is important that the result of the hs-TnI should be acted upon. In the setting of suspected acute coronary syndromes, a normal hs-TnI series (or an intermediate level with no rise), suggests a good prognosis. If these patients are being treated with LMWH, the treatment can be discontinued and the patient considered for discharge. Patients with a normal ECG in this scenario almost certainly have a good prognosis. In those patients with a fixed abnormal ECG (i.e. fixed T wave inversion) but negative hs-TnI, clinical judgement has to be used as to whether further in-patient assessment is required.

If patients are deemed to warrant further investigations in the form of functional imaging or angiography, a judgment needs to be made as to whether these tests have to be done as in-patients. In patients with no rise in hs-TnI, outpatient investigations should be seriously considered.

Hs-TnI is NOT mandatory to diagnose straightforward STEMI as results are usually very high and of limited value. In all STEMI CK should be measured. CK should be measured on admission and at 12 and possibly 24 hours. The only exception to this rule is when there is a suspicion that the ST segment elevation is thought to be longstanding (i.e. due to LV
aneurysm), but a more recent acute event is suspected where hs-TnI can be valuable. Hs-TnI should only be measured if it is going to alter the management of the patient.

Using the presenting symptoms, ECG and subsequent hs-TnI level, patients presenting acutely with cardiac chest pain can be grouped as follows:

ST-elevation MI (STEMI): Patients presenting with cardiac-sounding chest pain with persistent ST segment elevation (or new LBBB) on their ECG. ST elevation should be (in two or more contiguous leads) > 1 mm in limb leads and 2 mm in chest leads. Subsequent hs-TnI will frequently be > 100 ng/L (and CK usually > 400).

Non-ST elevation MI (NSTEMI): Patients presenting with cardiac-sounding chest pain. ECG may show ST segment depression, T wave inversion or may be normal. Subsequent hs-TnI will frequently be > 100 ng/L. Established ECG changes such as previous MI, LV hypertrophy or atrial fibrillation may be present. The hallmark of acute coronary syndrome is labile ECG changes (a changing ECG over time).

Unstable angina: Patients presenting with cardiac-sounding chest pain. ECG may show ST segment depression, T wave inversion or may be normal. Subsequent hs-TnI will be within the normal reference range.

Terms such as non-q wave MI and subendocardial MI are outdated, imprecise and should be avoided.

The key decision to make when a patient is admitted is whether they require urgent revascularisation, based upon the history and the ECG (guidelines on the management of STEMI can be found on page 61). It is vital to understand that virtually **ALL** of the evidence underpinning inpatient angiography guided revascularisation in apparent NSTEMI is derived from trials which dealt with patients fitting into the category of Type 1 and Type 4B MI. A number of patients with coronary spasm and coronary embolism will also have been included. The benefit of urgent revascularisation (stent-based) treatment is predominantly through treatment of culprit (plaque rupture) lesions coupled with the more diffuse action of drugs. Consider carefully if your patient has had an MI due to one of these conditions before assuming angiography is needed. **A SIGNIFICANT PROPORTION OF THOSE WITH ELEVATED TROPONINS DO NOT NEED INPATIENT ANGIOGRAPHY.**

The distinction between NSTEMI and unstable angina is retrospective - it can only be made when the hs-TnI result is available later. Patients presenting with cardiac sounding chest pain but no persistent ST elevation should be treated as unstable angina, and can be formally diagnosed as NSTEMI or unstable angina once the result of the hs-TnI test is available. The overall approach to the management of unstable angina and NSTEMI is the same (see page 84).

There may be an incidence of false positive elevation of hs-TnI in patients with advanced renal failure and positive results in these patients should be viewed with caution (especially if creatinine is over ~ 221 µmol/L. A rise in serial hs-TnI levels in patients with renal failure is however likely to be due to myocardial injury. Hs-TnI may also be elevated in the context of large pulmonary embolism. Occasionally, elevated hs-TnI may be seen in patients with acute cardiac failure and in myocarditis and following prolonged tachyarrhythmias (i.e. type 2 MI). Other conditions in which hs-TnI may be elevated are aortic dissection, aortic stenosis, hypertrophic cardiomyopathy, Takotsubo cardiomyopathy, malignancy, stroke and severe sepsis. Generally, hs-TnI levels do not seem to rise in the majority of patients who have undergone cardioversion. Hs-TnI levels may remain elevated for several days and care should be taken in their interpretation in the context of re-admissions within a couple of weeks of a myocardial infarction. A couple of serial hs-TnI levels will help by determining whether the level is falling (older event) or rising (recent event).
Pathway for the triaging of patients with suspected NSTEMI

1. **ECG features of NSTEMI / typical clinical picture?**
 - **YES**: Obtain hs-cTnI
 - **NO**: Continue with next step

2. **Dynamic ischaemic ECG changes while hs-cTnI awaited?**
 - **YES**: hs-cTnI <5ng/L AND sample taken >2h after onset of chest pain?
 - **YES**: Repeat hs-cTnI 2h after initial sample
 - **NO**: Further troponin testing may exceptionally be justified at the discretion of a senior clinician
 - **NO**: hs-cTnI ≥100ng/L
 - **YES**: NSTEMI (Type I MI) likely
 - **NO**: NSTEMI ruled out

3. **NSTEMI (Type I MI) likely**
 - **NB**: If elevated hs-cTnI without typical ischaemic symptoms, also consider Type II MI (O2 supply / demand imbalance: e.g. due to shock, respiratory failure or sustained tachyarrhythmia) or acute non-ischaemic myocardial injury (e.g. due to saponin, acute heart failure or myocarditis); see also UHL Acute MI and Cardiology Decision Aid.
 - **Involve ED/ward senior doctor and CCU registrar as indicated**

4. **NSTEMI ruled out**
 - **Consider need for CAD testing and / or treatment as appropriate**

NB: Use in adults aged >24 years with chest pain unless:
- No chest pain since >72h
- Clearly stable angina only
- Clearly due to other causes (e.g. trauma or shingles)
- STEMI or new LBBB on ECG
- Suspected esophageal rupture or aortic dissection
- Pain pleuritic
- Recent cocaine use
- CFS >5 (seek shared decision with patient/family first)

UHL Cardiology Guideline, Trust Ref C268/2016
Approved At RRCV
Next Review September 2025
Contact Ian Hudson

NB: Paper copies of this document may not be most recent version. The definitive version is held on INsite Documents
ECG

The diagnosis of STEMI is established by the presence on the ECG of ST elevation (> 0.1 mV, two or more contiguous leads). Patients presenting with left bundle branch block that is thought to be of new onset, and in the context of symptoms consistent with myocardial infarction should be treated in the same manner. All patients presenting within 12 hours of the onset of symptoms should be considered for urgent revascularisation (see page 62).

Patients with ST depression confined to leads V1 to V4 may have true posterior myocardial infarction and should be treated in the same manner as STEMI. All patients should routinely have POSTERIOR (V7 - V9) and RIGHT VENTRICULAR LEADS recorded ON OR SOON AFTER ADMISSION, especially those with inferior STEMI, as diagnostic changes may be transient. ST elevation in RV4 is highly sensitive for right ventricular infarction.

ST depression >1 mm in eight or more surface leads coupled with ST elevation in aVR and/or V1 suggests left main obstruction or severe three vessel ischaemia.

Transfer to catheter lab in the case of STEMI should not be delayed by performing further ECGs unless there is a doubt as to diagnosis. A bedside echo looking for regional wall motion abnormalities (RWMAs) can help the decision but should not delay transfer to the lab.

ECG electrodes should generally be left in position for the first 24 - 48 hours to eliminate position changes on subsequent ECGs.

In the case of unstable angina and NSTEMI the ECG changes may manifest as transient ST segment depression or elevation, T wave inversion or flattening, T wave pseudo-normalisation (or even no change at all). Previously established ECG changes such as old MI, LV hypertrophy and digoxin effect need to be considered.

You can't have too many ECGs. Any patient admitted with possible ACS should have ECGs repeated several times over the first couple of days, especially if there is any doubt as to the diagnosis. Particularly relevant is when the initial ECGs have been normal but the hs-TnI is elevated. If the pain is entirely convincing, ECGs should be repeated as frequently as every 30 minutes in order to establish the diagnosis as quickly as possible. ECGs and enzymes performed ‘next day’ in the ‘ROMI: rule out myocardial infarction’ fashion is totally unacceptable.

Certain conditions may mimic STEMI on the ECG. Early repolarisation causes up-sloping ST elevation, particularly in leads V1 and V2 (and sometimes V3). It is seen more commonly in younger, especially athletic patients. It is also seen in some Afro-Caribbeans. There may be concave ST elevation in pericarditis and the ST changes may be very widespread. Brugada syndrome may also be misdiagnosed as anterior STEMI (see page 126). Takotsubo cardiomyopathy (page 76) can also mimic STEMI and NSTEMI.

Blood Tests

All patients should have a full biochemical screen on admission including lipid profile, random glucose and an HbA1c assay performed. A full blood count is mandatory.

Cardiac enzymes including **hs-TnI** should be done on admission as outlined previously (page 54). A **CK** at 24 hours helps give an estimation of infarct size, especially in STEMI.
Other causes of elevated CK include: surgery, myopathic disorders (rhabdomyolysis, polymyositis, dermatomyositis, myocarditis, alcoholism), muscular dystrophy, significant muscle trauma, malignant hyperpyrexia, hypothyroidism, pulmonary emboli, convulsions, and cerebral infarction. Drugs can also cause an elevation and these include **colchicine, haloperidol, prochlorperazine, quinidine, tricyclics** and lipid lowering drugs (including **statins** and **fibrates**). Healthy asymptomatic Afro-Caribbeans have a higher CK level than Caucasians or Hispanics.

Urea and electrolytes should be measured on days 1 and 2 to determine renal function and, in particular, to determine potassium levels. More frequent and/or prolonged assessment is required in patients with low output cardiogenic shock, pre-existing renal disease or hypotension. Liver function tests may be abnormal in patients with significant right heart failure and should be measured on the initial sample and thereafter if abnormal.

Thyroid function tests should be performed on selected patients including those with recent onset atrial fibrillation and those on or about to receive amiodarone (if there is no record of the latter being done in recent weeks - check iLab, or ICE).

For younger patients presenting with myocardial infarction, consider asking the lab to store samples for possible exclusion of drug abuse. Cocaine, amphetamines, ecstasy and marijuana have all been implicated in coronary spasm and ultimately myocardial infarction. Screening on admission may need to be considered.

Chest X-Ray

A chest X-ray should be arranged on most patients as soon as possible after admission. It should not however delay any proposed revascularisation therapy.

Echocardiography

In the context of acute coronary syndromes echocardiography is helpful to assess left ventricular function. It can detect regional wall motion abnormalities (RWMAs) which are likely to be due to coronary disease. It may be impossible to distinguish RWMAs due to acute ischaemia from those due to a previous MI. Preservation of normal wall thickness and normal reflectivity, suggests an acute event, while a thin akinetic reflective segment suggests likely previous infarction.

Valve disease can obviously be assessed. Daily auscultation will occasionally detect new murmurs following myocardial infarction. VSDs, though increasingly uncommon, can be assessed with echo.

Left ventricular thrombus may occur after extensive anterior myocardial infarction (although can be missed on echo). Thrombus is more readily detected on CMR.

Requests for urgent (especially out of hours) echocardiography should be discussed with the cardiology SpR or non-interventional cardiology consultant if the patient is at LRI or LGH.

The following figures will help interpret regional wall motion abnormalities documented in echo reports.
Relationship of two-dimensional echo views and coronary artery perfusion:
Regional assessment of myocardial perfusion or wall motion:

- The left ventricle is divided into three sections (basal, mid, apical) in its short axis.
- The basal and mid segments are each divided into six segments.
- The apical segment is divided into four segments.
- The true apex (no cavity) is a single segment.

Exercise Testing & Functional Imaging

An exercise test may be helpful and should be considered in all active, otherwise fit patients if the cause of chest pain is unclear. It can be helpful when deciding whether further interventions are required and as a means of risk stratification. Functional imaging however is being used increasingly to guide future therapy. Options are stress echo, CMR and perfusion studies. Whether these can be done as inpatients or outpatients should be decided by the consultant.

Angiography

See page 40.
MANAGEMENT OF STEMI

Intravenous Access
A peripheral venous catheter should be sited in all patients. The use of antecubital and small hand veins should, if possible, be avoided. Because a majority of angiographic procedures are performed via the right radial artery, peripheral venous catheters should not be sited in or around the right wrist. Catheters should be removed and/or changed if there are clear signs of phlebitis (pain, erythema, induration). They should be flushed with saline after use and Hep-lock employed if they are not likely to be used for > 8 hours.

Analgesics & Pain Relief
Early and adequate reduction in pain is important, both for symptomatic reasons and to improve myocardial ischaemia, as severe pain itself has a deleterious effect on the oxygen supply/demand relationship after myocardial infarction.

Acute pain should be controlled with morphine (2.5 - 5 mg) until symptomatic relief has been achieved. An anti-emetic should always be given with the initial dose (metoclopramide 10 – 20 mg IV or cyclizine 50 mg IV) as nausea and vomiting are likely with an opiate given alone.

Mild post-infarction chest discomfort is not uncommon on the second or third day, and a milder oral analgesic such as cocodamol (paracetamol 500 mg + codeine phosphate usually 30 mg) or paracetamol alone may be appropriate. NSAIDs should generally be avoided where possible, although may have a role to play when pain is consistent with pericarditis.

For anxious patients, short-term use of anxiolytics such as diazepam is not inappropriate.

Oxygenation
Oxygen therapy is only beneficial in patients who have significant hypoxaemia (SaO₂ < 90%), in particular those with pulmonary oedema or low output cardiogenic shock. There is no evidence that routine oxygen therapy is beneficial. In this situation oxygen should be administered using a 35% mask or nasal cannula unless there is a contra-indication. CPAP may be of value in severely hypoxic patients (arterial PO₂ < 8.0 kPa/60 mm Hg, despite 100% oxygen at flow rate of 8 - 10 L/min.). Discuss the need with duty SpR/anaesthetist before using this, as mechanical ventilation may be more appropriate. Taking blood gases should generally be avoided in patients whom thrombolytic or glycoprotein IIb/IIIa inhibitors (GP2b3aI) are being employed or contemplated. Oxygen saturations should be monitored in this situation with pulse oximetry.

Aspirin
Aspirin should be given to nearly all patients with myocardial infarction as this has a significant impact on mortality. For every 1000 patients treated, aspirin started within 24 hours of onset of infarct symptoms prevents around 40 vascular events (vascular deaths, non-fatal re-infarctions or strokes) in the first month and about 40 more over the next two years. If not already administered, all patients should be given aspirin 300 mg and instructed to chew the tablet. Thereafter aspirin 75 mg OD should be prescribed. There is a considerable body of evidence supporting the role of aspirin in secondary prevention of myocardial infarction. If dyspepsia is a problem this can
occasionally be overcome by the concomitant use of H₂ blockers such as ranitidine 150 - 300 mg BD or a PPI such as lansoprazole 15 - 30 mg OD. All patients with known or suspected coronary disease should be taking aspirin unless contraindicated. In elderly patients taking dual antiplatelet therapy there should be a low threshold to introduce a PPI.

For patients with apparent or proven aspirin allergy, desensitisation can be very effective and achieved very quickly (see page 240).

Prasugrel

Prasugrel is a thienopyridine and works in a similar way to clopidogrel, by inhibiting platelets’ ADP receptors to achieve its antiplatelet effects. The onset of action is significantly quicker with prasugrel compared to clopidogrel. Prasugrel is administered as a loading dose of 60 mg followed by 10 mg daily (for up to 12 months). There is recent evidence that crushing prasugrel leads to faster drug absorption, and consequently, more prompt and potent antiplatelet effects compared with whole tablet ingestion.

Guidance from the National Institute of Clinical Excellence (NICE) states that prasugrel should be used alongside aspirin in place of clopidogrel in patients presenting with STEMI who require treatment with PPCI, and in those who have suffered stent thrombosis whilst on clopidogrel therapy.

The pivotal trial for prasugrel, TRITON-TIMI 38, focused on patients with ACS who were referred for PCI. A weakness of the trial was that the loading dose of clopidogrel in the comparison group was 300 mg whereas most recommendations now are that the loading dose of clopidogrel should be 600 mg.

Nevertheless, particular benefit is apparent in patients with diabetes and those under the age of 75. It is contraindicated in patients who have had prior stroke or TIA and should be avoided in patients who weigh less than 60kg.

In UHL its use is restricted to patients undergoing PPCI for STEMI who are under the age of 75 and who weigh more than 60kg and who have not had a prior TIA or stroke.

Ticagrelor

Ticagrelor is a non-thienopyridine ADP receptor blocker causing reversible inhibition of platelet function and has been compared with clopidogrel in the PLATO study. It confirmed a significant improvement of combined clinical endpoints including mortality. Ticagrelor is given as a loading dose of 180 mg daily followed by 90 mg BD. For patients who cannot have prasugrel (prior stroke, weight < 60 kg, age > 75) in STEMI, ticagrelor should be considered in preference to Clopidogrel. Ticagrelor is the first choice drug in patients with confirmed acute coronary syndrome (NSTEMI) whether or not they undergo PCI. It should be given for 12 months in the context of ACS. A side effect to be aware of is dyspnoea which can occur at rest.

More prolonged treatment with ticagrelor 60 mg BD (NICE TA 420) should be considered for patients who are deemed high risk of further events (along with aspirin 75 mg OD). This data is derived from the PEGASUS-TIMI 54 Trial. Little evidence suggests benefit beyond a total of 4 years (standard plus reduced dose).
Clopidogrel

Clopidogrel can be administered to patients with STEMI undergoing PPCI who do not fulfil the criteria for prasugrel, using a loading dose of 600 mg. *Ticagrelor* is generally preferred however in this situation. Duration will usually be for 12 months regardless of the stent deployed, but check with the consultant responsible. The evidence for routine *clopidogrel* (75 mg OD) in patients who do not undergo PCI for STEMI is weaker and certainly there is little evidence that continuing *clopidogrel* beyond 4 weeks is helpful. *Clopidogrel* should be used for the few patients treated with thrombolysis.

There has been considerable controversy regarding the use of *proton pump inhibitors* (PPIs) with *clopidogrel*. Some retrospective studies had raised concerns that such treatment might reduce the cardiovascular efficacy of *clopidogrel*. A randomised controlled trial of 3627 patients taking aspirin and *clopidogrel* randomised to *omeprazole* or placebo found no difference in vascular outcomes between groups. Other studies support these findings suggesting that *PPIs* have little, if any, effect on the in vivo efficacy of *clopidogrel*. A recent North American cardiology and gastroenterology consensus guideline has now recommended that patients taking *clopidogrel* and aspirin, who were deemed at risk of upper GI bleeding, should be co-prescribed *PPIs*, because of their protective effect.

Clopidogrel is also the drug of choice in STEMI patients who are anticoagulated. The risk of bleeding in anticoagulated patients is deemed too high with prasugrel and ticagrelor. Patients on *warfarin* who require aspirin and *clopidogrel* therapy should be discussed at consultant level before any antiplatelet platelet or anticoagulation medication is discontinued. Management decisions need to be made on a case-by-case basis (see later ‘triple anticoagulation’ page 73).

Primary Angioplasty (PPCI)

Primary angioplasty is defined as PCI (percutaneous coronary intervention) performed as the primary (without thrombolysis) therapeutic measure in patients presenting with myocardial infarction. Restoration of normal flow in the culprit artery is achieved in over 95% in most studies with significant long-term benefits.

PPCI should be considered in all patients presenting with STEMI if symptom onset is within 12 hours. PCI should also be considered if there is clinical and/or ECG evidence of on-going ischaemia, even if, according to the patient, symptoms started > 12 hours before as the exact onset of symptoms is often unclear. Ideally PPCI should be performed within 2 hours of first medical contact. If it is likely that delay to treatment is going to be greater than 2 hours serious consideration should be given to administration of a lytic agent.

In office hours patients should be taken directly to the catheter lab and an assessment made en route. The procedure needs to be explained to the patient ready for obtaining consent. Written consent is NOT mandatory. All delays need to be minimised. An effort should be made to document timings as follows: time of onset of symptoms, time of call for help, time of crew arrival and time of arrival in hospital and time of arrival in the lab. Auscultation of the heart and chest is mandatory before the procedure.

Patients should be administered aspirin and prasugrel (or ticagrelor or *clopidogrel*) as outlined previously (page 61). In most cases aspirin should be subsequently given for life.
PPCI usually involves the use of anticoagulants which may include **UFH, abciximab** or **tirofiban**. **UFH** should still be administered to patients who are on anticoagulant therapy already but stopped immediately on completion of the procedure. **GP2b3aI** should generally be avoided in this scenario. It is worth noting at this point that in patients undergoing elective PCI who are on oral anticoagulant therapy, additional parenteral **anticoagulation** is **NOT** indicated (as long as INR > 2-5).

If **UFH** is used alone, the dose is usually 70-100 IU/kg aiming for an ACT of 250 - 330s.

Tirofiban (25 µg/kg bolus over 3 minutes followed by continuous infusion of 0.15 µg/kg/min) has been evaluated in a number of trials involving patients with STEMI and is an alternative to **abciximab** which was previously employed as the preferred **GP2b3a inhibitor** if there is clear evidence of coronary thrombus. **Abciximab** is still used occasionally (0.25 mg/kg IV bolus followed by infusion of 0.125 µg/kg/min up to a maximum of 10 µg/min for 12 hours).

Patients should be assessed carefully after procedures for signs of bleeding, especially from sites of vascular access. Unexpected hypotension may be due to occult blood loss related to retroperitoneal bleeds, haemopericardium or GI bleeds and these conditions need to be considered. Groin complications are not uncommon and imaging with ultrasound may be indicated to exclude false aneurysms etc. CT scanning may be necessary. Similar assessment should follow elective angiographic procedures. Vascular complications from radial procedures are unusual but patients must still be assessed carefully. Many patients can be discharged within 2 to 3 days after treatment with PPCI if they do not have evidence of heart failure and have not demonstrated any significant arrhythmias.

Out of Hospital Cardiac Arrests

Patients who have sustained a cardiac arrest in the community are admitted directly to Glenfield if thought to be cardiac (documented VT/VF or ECG changes consistent with ACS). Patients are pre-alerted by the paramedic crews and cardiology anaesthetic teams are activated. If there is ST elevation on the ECG following cardiac arrest emergency angiography with a view to PCI is indicated. If there is no ST elevation or indication the arrest was primarily cardiac it is not unreasonable to assess for other causes first.

Many patients are taken directly to the catheter lab if there is ROSC in much the same way as for PPCI in usual STEMI cases. Some patients will be undergoing CPR with a LUCAS device.

Caution should be applied if the arrest was unwitnessed, if there was a delay in CPR, if the initial rhythm was non-shockable, or if there was a delay of more than 20 minutes before the return to spontaneous circulation with ALS. In these circumstances there is a higher risk of neurological injury.

Blood gases should be obtained as soon as possible - but this should not delay the undertaking of the angiogram as gases can be obtained after vascular access has been achieved. Severely acidotic patients have a poor prognosis.

The administration of **DAPT** poses particular challenges in ventilated patients.

- NG tubes are **not** to be inserted in CCU or catheter lab for **DAPT**.
The NG tube can be inserted in ITU and DAPT administered after screening or confirmation with pH testing.

Cangrelor is an intravenous direct P2Y₁₂ platelet receptor antagonist that blocks adenosine diphosphate induced platelet activation and aggregation. _Cangrelor_ (initially 30 μg / kg, should be given as a bolus dose, followed immediately by 4 μg/kg/minute) in ventilated patients undergoing emergency PCI along with _aspirin_ 330 mg suppository. After placement of a NG tube in ITU, patients will then be loaded with _prasugrel, ticagrelor_ or _clopidogrel_ via the NG on ITU immediately after completion of the infusion.

Ticagrelor loading dose (180mg) can be given at any time during _Cangrelor_ infusion or immediately after discontinuation. _Prasugrel_ loading dose (60mg) must be given immediately after _Cangrelor_ discontinuation. _Clopidogrel_ loading dose (600mg) must be given immediately after _Cangrelor_ discontinuation. If _prasugrel_ or _clopidogrel_ are given during _Cangrelor_ infusion, they will have no antiplatelet effect until the next dose is administered. Once _Cangrelor_ is discontinued there is no antiplatelet effect after 1 hour.

Ventilated patients are cared for on ITU and are usually maintained at a steady temperature to reduce the risk of brain injury. The responsible interventionist should continue to provide cardiology input. If unavailable, the CCU consultant on call should be involved.

Thrombolysis

Thrombolysis is now rarely administered in UHL. A tiny proportion of patients will however receive thrombolysis if their procedure is likely to be significantly delayed (no cath lab available).

If given within 6 hours there is proven benefit in patients with ECG evidence of STEMI. THE EARLIER TREATMENT IS GIVEN, THE GREATER THE BENEFIT.

TNK (tenecteplase) is the agent available in CCU. The dose is weight adjusted:

- Less than 60 kg: 30 mg IV bolus administered over 10 seconds
- 60 to less than 69 kg: 35 mg IV bolus administered over 10 seconds
- 70 to less than 79 kg: 40 mg IV bolus administered over 10 seconds
- 80 to less than 89 kg: 45 mg IV bolus administered over 10 seconds
- 90 kg or greater: 50 mg IV bolus administered over 10 seconds

In patients treated with thrombolysis, verbal consent should be obtained and recorded in the notes. Patients should be aware that there is a 0.5% risk of major haemorrhagic complications, including stroke. Half dose should be used in patients over the age of 75.
Absolute contra-indications to thrombolysis are:

- Recent stroke (2 months)
- Recent head trauma (4 weeks)
- Uncontrolled hypertension (BP >180/110 mmHg)*
- Aortic dissection
- Recent surgery - including dental extraction
- Acute pancreatitis
- Lumbar puncture (within 4 weeks)
- Concurrent anticoagulation (unless INR < 2.0)
- Active GI blood loss
- Active pulmonary disease with cavitation
- Severe liver disease or clotting disorder
- Cerebral neoplasm
- Oesophageal varices
- Previous intracranial bleed
- Pregnancy or < 18 weeks postnatal

* Significant hypertension should be controlled as quickly as possible employing IV antihypertensive agents such as atenolol (5 - 10 mg), metoprolol (5 - 15 mg), labetalol (see page 231), sodium nitroprusside (0.5 - 10 µg/kg/min, see page 233), GTN (10 - 200 µg/min, see page 233), or isosorbide dinitrate (1 - 10 mg/hr).

Nicardipine (IV) may become available in the near future. For adults the initial dose is 3 - 5 mg/hour for 15 minutes, increased in steps of 0.5 - 1 mg every 15 minutes, adjusted according to response, maximum rate 15 mg/hour. Reduce dose gradually when target blood pressure achieved; maintenance 2 - 4 mg/hour. For the elderly the dose is initially 1 - 5 mg/hour, then adjusted in steps of 500 micrograms/hour after 30 minutes, adjusted according to response, maximum rate 15 mg/hour.

CPR is not an absolute contraindication to lysis, especially if the resuscitation was not significantly prolonged or traumatic, neither is diabetic retinopathy.

Bleeding Problems after Thrombolytic Therapy

The major serious complication associated with thrombolysis is haemorrhage and, if intracranial, this may be fatal. The incidence of major haemorrhagic complications is in the region of 0.5%.

If major bleeding complications occur the infusion should be stopped (including UFH if given) and a full coagulation screen taken (FBC, INR, APTT, thrombin time, fibrinogen and D-dimers). The haematologist on-call should be consulted.

If bleeding is serious and life-threatening give tranexamic acid 1g IV over 15 minutes whilst awaiting coagulation indices.

When thrombin time and INR are prolonged but fibrinogen > 1 g/L give 15 ml/kg of FFP and 1 adult therapeutic dose (ATD ~ 330 ml) of cryoprecipitate.

When thrombin time is prolonged and fibrinogen is low (< 1 g/L), give 1 ATD of cryoprecipitate.

If on-going bleeding occurs tranexamic acid can be given at 8 hourly intervals.

Recognition & Management of Failed Thrombolysis

Some patients will have continuing symptoms and/or ECG changes following thrombolysis. They form a subgroup in which management decisions are not straightforward.
Even with the best thrombolytic regimen, normal (TIMI 3) flow in the culprit coronary artery is achieved and maintained in less than 50% of patients treated. ST segment resolution is currently the most useful simple guide to vessel patency after thrombolysis and also correlates with outcome (30 day mortality in the INJECT study). Analysis from data in the GISSI-2 trial suggested that reduction of ST-segment elevation by > 80% accurately determined which patients had successfully reperfused. This data is based on mortality statistics however, rather than angiographic findings. Overall, the changes are not sensitive and specific enough for clinical purposes. In one study it was suggested that a 20% decrease in ST-segment elevation accurately determined which patients had successfully reperfused. This data is based on mortality statistics however, rather than angiographic findings. Overall, the changes are not sensitive and specific enough for clinical purposes.

It is recommended that a 12 lead ECG is performed at 60 - 90 minutes following lytic therapy and if there has not been greater than 50% resolution of ST elevation and there are on-going symptoms, patients should be considered for rescue PCI as the REACT study revealed clear benefit from this strategy. Patients within 6 hours of myocardial infarction are those most likely to benefit.

Please be aware that some patients will have chronic ST elevation following previous infarction and will subsequently be found to have normal cardiac enzymes. Early SpR or consultant input is required in the decision-making processes.

Rescue PCI

This is defined as PCI following perceived failed thrombolysis. Rescue PCI should be considered in those patients who have received thrombolytic therapy who have on-going ischaemic chest pain with failure of resolution of the ST elevation of more than 50% at 60 - 90 minutes (and who are within 12 hours of the onset of symptoms). Patients should be treated as for PPCI and be preloaded with prasugrel, ticagrelor or clopidogrel (they should already have had aspirin, but check).

Rescue PCI is associated with a significant reduction in heart failure and reinfarction and a trend towards lower all-cause mortality when compared with a conservative strategy, at the cost, however, of an increased risk of stroke and bleeding complications. Patients should be assessed carefully post-procedure to look for bleeding as patients undergoing rescue PCI are at much higher risk of haemorrhagic complications.

Treatment of Patients Who Do Not Receive Lysis or PPCI

If it is decided that reperfusion therapy is not appropriate on admission, give aspirin as for usual STEMI management and enoxaparin. In most patients who did not receive reperfusion therapy, angiography before hospital discharge should be considered if there are no major contraindications (co-morbidity, frailty etc), similar to patients after successful lysis (see below).

Delayed Angiography/PCI

Patients who appear to have had successful lysis should still be considered for angiography ideally within a few hours of admission. In the CARESS trial, a strategy of sending patients for angiography only in the case of failed lysis was associated with a worse clinical outcome when compared with a strategy of referring all patients for angiography and (if indicated) PCI. A time window of 3 - 24 hours following lysis is recommended. In patients presenting days after the acute event with Q waves, only patients with recurrent angina and/or documented ischaemia with proven viability benefit from revascularisation.
Management of No Reflow in the Catheter Lab

No reflow is seen not uncommonly in the context of PPCI and also in PCI for NSTEMI patients. It is associated with worse outcomes. Management includes the use of intracoronary isosorbide dinitrate (1 - 2 mg boluses) adenosine (30 - 60 µg) or verapamil (0.5 - 1.0 mg). Nitroprusside given as boluses of 0.6 µg/kg is an alternative. Tirofiban or abciximab may also have a role to play. There is some evidence that aspiration of thrombus may improve outcomes but it is not used routinely.

Emergency CABG

Emergency surgical revascularisation should be considered in the context of STEMI where there is failed PCI or unfavourable anatomy only when there is a large area of myocardium at risk and surgery can be performed within 3 - 4 hours of onset (before myocardial necrosis). In the absence of persistent pain or haemodynamic deterioration, a waiting period of 3 - 7 days appears to be the best compromise.

For patients on DAPT, aspirin should usually be continued but ideally clopidogrel should be stopped 5 days before surgery, prasugrel 7 days before surgery and ticagrelor 3 days before surgery (but check with the surgeon). This also applies to patients referred for CABG after NSTEMI.

Medications

Beta Blockade

β-blockade is underused nationally and SHOULD BE CONSIDERED IN ALL SUITABLE CASES LIKELY TO BENEFIT. There is good evidence that early β-blocker therapy is beneficial, although patients with extensive myocardial infarction and a bradycardia may deteriorate. Benefit is probably greater if β-blockade is given early and is possibly due to a reduction in cardiac rupture on day one. If the patient is haemodynamically stable (heart rate > 80, systolic BP > 110 mmHg, and no overt signs of failure) a β-blocker should be administered at the first opportunity.

β-blockade may be particularly beneficial in patients with a tachycardia (rate > 110) and hypertension (systolic BP > 160 mmHg) on admission when treatment reduces cardiac oxygen demand (and therefore reduces infarct size and peri-infarct ischaemia) and also reduces the risk of cardiac rupture and cerebral haemorrhage in patients who have received thrombolysis. β-blockade is also indicated in all patients with unstable angina or post-infarct angina.

There is evidence of benefit from long-term β-blockade after hospital discharge. Trials of metoprolol and propranolol have also been favourable. Bisoprolol is the main β-blocker employed in UHL post-MI, and is licensed for use in the context of LV dysfunction. Patients with myocardial infarction should usually be discharged on a β-blocker unless there are contraindications or unacceptable side effects. Treatment should be continued for at least 12 months.

β-blockers should initially be avoided if sinus tachycardia is secondary to cardiac failure, shock or hypotension. They should still be considered prior to discharge in patients who have had transient failure. In patients with evidence of significant LV dysfunction, only two β-blockers are licensed for use: Bisoprolol and carvedilol (see page 144).
β-blockers should be avoided in severe airways disease (relative contraindication in COPD although usually well tolerated), patients with second or third degree heart block, and severe peripheral vascular disease (relative contraindication).

Calcium Antagonists

There is weak evidence that **verapamil** 120 mg TDS is an alternative to **β-blockers** in secondary prevention after myocardial infarction in patients in whom **β-blockade** is contraindicated. **Verapamil** should be used with caution in patients with impaired LV function and should NOT be used in combination with a **β-blocker**.

Diltiazem, a non-dihydropyridine **calcium antagonist**, has showed possible benefit in patients with NSTEMI. In patients who have received thrombolysis, **diltiazem** may reduce further non-fatal events and the need for revascularisation, but does not appear to impact on mortality.

The **dihydropyridine** group of **calcium antagonists** (**nifedipine**, **nicardipine**, **amlodipine**, **lercanidipine**, **felodipine**) should generally **not** be used after myocardial infarction and may cause adverse effects.

Nitrates

IV nitrates should be used in patients with unstable angina and in patients with angina post infarction. Both ISIS 4 and GISSI 3 have shown no benefit from the routine use of **nitrates** after myocardial infarction. They are also useful in patients with heart failure following myocardial infarction and in the management of hypertension in the setting of myocardial infarction. Care should be taken in patients with suspected right ventricular infarction as giving **nitrates** may result in hypotension.

ACE Inhibitors

ACE inhibitors (ACEI) have been shown to reduce the development of progressive LV dilatation and reduction in LV performance seen following myocardial infarction. Studies have also suggested a reduction in late cardiac failure, myocardial infarction and death.

In general, patients with anterior myocardial infarction or clinical signs of heart failure should receive treatment with an **ACEI** unless there is a contraindication. Similarly, patients with a history of prior infarction should receive an **ACEI** prior to discharge. Of proven benefit after myocardial infarction are **captopril** (6-25 mg increasing in stages to a maintenance dose of 12-5 - 50 mg TDS), **enalapril** (2-5 - 10 mg BD or 2-5 - 40 mg OD), **lisinopril** (2-5 - 40 mg OD), **ramipril** (2-5 - 5 mg BD or 5 - 10 mg OD) and **trandolapril** (0-5 - 4 mg OD). It is likely that there is a class effect and other available **ACEI** including **perindopril** (2 - 8 mg OD) may be equally effective.

Treatment should generally be started after 24 - 48 hours and certainly should be used in any patients subsequently shown to have impairment of LV function (EF < 40%) on echo. Generally speaking, the dose of the **ACEI** should be increased to the maximum dose according to tolerability. Gentle titration over a few weeks is advisable.

Any patients with a high risk of vascular events should be considered for treatment with an **ACEI** in light of data from the HOPE study. Diabetic patients in particular may benefit from this strategy.
Angiotensin Receptor Blockers

Trial evidence suggests that angiotensin II receptor antagonists (ARBs) such as losartan 25 -150 mg OD, valsartan 40 - 160 mg BD and candesartan 4 - 32 mg OD are an effective alternative to patients intolerant of ACEI. Valsartan has been shown to be as effective as captopril in patients post-myocardial infarction who have LV dysfunction or symptomatic heart failure, and is licensed for use in this situation. As with ACEI, the dose of valsartan should be started low (at 20 - 40 mg BD) and titrated up to the maximum dose of 160 mg BD over the first few weeks according to tolerability. Candesartan is also licensed for use in patients with heart failure.

Lipid Lowering Therapy

Lipids should be measured in ALL patients on admission and therapy started with a statin (simvastatin 40 mg OD, atorvastatin 10 -80 mg or rosvastatin 5 - 10 mg OD). In patients presenting with a recent acute coronary syndrome there is evidence that high intensity statin therapy for a period is beneficial employing atorvastatin 80 mg or rosvastatin 5 - 10 mg OD. Patient selection is important and caution should be applied in the elderly. In Asian patients rosvastatin should be started at 5 mg OD and doses of 40 mg OD are contraindicated.

There is now evidence that all cardiac patients, regardless of the cholesterol level, benefit from statin therapy. The Heart Protection Study showed that treatment with simvastatin 40 mg reduced the rates of myocardial infarction, of stroke, and of revascularisation by at least one-quarter irrespective of the initial cholesterol concentration.

The target is to reduce non-HDL-C < 1·4 mmol/L or a > 50% reduction in non-HDL-C. Total cholesterol target should ideally be < 4·0 mmol/L.

In patients already established on a full dose statin (especially a more potent statin), whose lipid profile is still not within target range, co-administration of the statin with ezetimibe 10 mg OD (which inhibits intestinal absorption of cholesterol) should be considered. The IMPROVE-IT trial showed that adding ezetimibe to simvastatin reduces cardiovascular events in high-risk patients with ACS.

In patients intolerant of statins, fibrates should be considered (bezafibrate: Bezalip-Mono® 1 tablet OD or fenofibrate 160 mg OD). They are particularly useful in patients with low HDL levels or high triglyceride levels. Trials have shown the benefit in using these drugs as secondary prevention after acute cardiac events. It is worth emphasising however that in patients who have been intolerant of statins previously, may not be intolerant of all statins, and may be successfully reintroduced to statins if lower doses are employed than previous. In addition, rosvastatin may be better tolerated in this scenario. Ezetimibe monotherapy should also be considered if statin intolerant.

Patients with raised lipids who cannot take statins, and patients with familial hyperlipidaemia (FH), should be referred to the lipid clinic for consideration of the administration of monoclonal antibodies that inhibit PCSK-9 (NICE have approved two agents in the UK: evolocumab and alirocumab). Similarly patients should be referred for PCSK-9 inhibitors if they cannot reach target LDL despite high dose statin therapy plus ezetimibe.
FH should be suspected in adults with LDL levels above 4·9 mmol/L or total cholesterol above 7·5 mmol/L. In addition, one should look for a family history of premature vascular disease (men < 55 years, women < 60 years) or significant hypercholesterolemia. Physical examination may reveal premature arcus cornealis (< 45 years) or tendinous xanthomata. Genetic screening is of great value (mutations in the LDLr, apoB or PCSK9 genes). From the cardiology perspective FH is associated with aortic stenosis, ischaemic heart disease and peripheral vascular disease. Because of a 50% risk of passing the gene defect on, the whole family should be screened.

The aim of treatment is to reduce non-HDL-C to < 1·8 mmol/L in all patients with FH and < 1·4 mmol/L in those with other major cardiovascular risk factors or established vascular disease.

Measurement of lipoprotein (a) should be considered in patients with premature coronary disease.

A relatively simple method of identifying patients with FH can be employed using the Dutch Lipid Clinic Network score (DCLNS).

Dutch Lipid Clinic Network score (DCLNS).

<table>
<thead>
<tr>
<th>Criteria*</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FAMILY HISTORY</td>
<td></td>
</tr>
<tr>
<td>First-degree relative with known premature coronary or vascular disease younger than 55 (males) or 60 (females) years of age OR First-degree relative with known LDL-cholesterol >95th percentile for age and sex</td>
<td>1</td>
</tr>
<tr>
<td>First-degree relative with tendon xanthomata or arcus cornealis OR Child (<18 years of age) with LDL-cholesterol >95th percentile for age and sex</td>
<td>2</td>
</tr>
<tr>
<td>2. PATIENT HISTORY</td>
<td></td>
</tr>
<tr>
<td>Premature coronary artery disease at <55 years (males) or <60 years (females)</td>
<td>2</td>
</tr>
<tr>
<td>Premature cerebral or peripheral vascular disease, same age criteria by sex</td>
<td>1</td>
</tr>
<tr>
<td>3. PHYSICAL EXAMINATION</td>
<td></td>
</tr>
<tr>
<td>Tendon xanthomata</td>
<td>6</td>
</tr>
<tr>
<td>Arcus cornealis before 45 years of age</td>
<td>4</td>
</tr>
<tr>
<td>4. BIOCHEMISTRY</td>
<td></td>
</tr>
<tr>
<td>LDL-cholesterol > 8.4 mmol/l</td>
<td>8</td>
</tr>
<tr>
<td>LDL-cholesterol 6.5-8.4 mmol/l</td>
<td>5</td>
</tr>
<tr>
<td>LDL-cholesterol 5.0-6.4 mmol/l</td>
<td>3</td>
</tr>
<tr>
<td>LDL-cholesterol 4.0-4.9 mmol/l</td>
<td>1</td>
</tr>
<tr>
<td>5. GENETICS</td>
<td></td>
</tr>
<tr>
<td>Functional mutation of any of LDLr, APOB or PCSK9 genes</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregate score</th>
<th>Diagnosis/Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 8</td>
<td>Definite FH</td>
</tr>
<tr>
<td>6 - 8</td>
<td>Probable FH</td>
</tr>
<tr>
<td>3 - 5</td>
<td>Possible FH</td>
</tr>
<tr>
<td>< 3</td>
<td>Unlikely FH</td>
</tr>
</tbody>
</table>

Colchicine

Recent trial evidence reported at the ESC 2020 meeting suggests that early initiation of *colchicine* (0.5 mg OD) reduces the risk of cardiovascular death, cardiac arrest, MI and stroke. Data is available in the following studies: COLCOT, CANTOS, LoDoCo and the LoDoCo2 trials. About 10% of patients will not tolerate the medication due to gastrointestinal issues.
Management of Diabetic Patients

Impaired control of pre-existing diabetes is common in the setting of an acute cardiac event and is associated with poorer outcomes. As a result attempts should be made to ensure good glycaemic control. This is usually achieved by the use of insulin infusions in patients presenting with a laboratory (not glucose meter) blood glucose on admission > 11·0 mmol/L (even if not known to be diabetic).

Although tight glycaemic control appeared to improve mortality in the DIGAMI Trial, in the DIGAMI-2 study mortality did not differ between patients subsequently left on insulin and those changed to oral agents.

From extrapolating data from a variety of studies and publications, the main benefit is seen by keeping glucose levels within normal ranges (5 and 7·8 mmol/L). In patients not previously on diabetic therapy oral agents should probably be preferred. Care needs to be taken to avoid blood glucose levels below 4 mmol/L. In patients who are critically ill, such as those with cardiogenic shock, blood glucose levels should be ideally kept between 7·8-10 mmol/L with insulin infusions.

An HbA1c should be measured on all known or suspected diabetic patients on admission. HbA1c is now expressed in percentages. A level > 6·5% is diagnostic of diabetes. A level between 6·0 and 6·4% is consistent with impaired glucose tolerance.

Target for Type 1 diabetes is < 7% and type 2 diabetes 6·5 - 7·5%.

Advice of the diabetes nurse specialist or team should be sought.

In patients started on insulin for the first time, insulin should probably be continued for a minimum of three months and then reviewed in the diabetes clinic. Referral to the local diabetes Clinical Nurse Specialist Team is essential to arrange education and follow-up as necessary. Ensure discharge letters go to the diabetologist.

Metformin should be recommenced with caution in any patient with evidence of LV dysfunction.

Empagliflozin (an SGLT-2 inhibitor) has been shown in the EMPA-REG outcome trial to reduce cardiovascular events in patients with type 2 diabetes and cardiovascular disease. It should be considered as a preferred option in type 2 diabetes but its use should be restricted to outpatient management in follow up - and preferably under the supervision of the diabetes teams as it would necessitate dose reduction of other agents.

Hypertension

Patients with coronary artery disease should have strict control of blood pressure. Secondary prevention guidelines recommend blood pressure should be maintained at 135/80 or less.

For diabetic patients, particularly those with renal impairment, tighter control of 130/80 or less should be aimed for. How this is achieved is obviously tailored according to the needs of the individual patient, although β-blockers and ACEI should be used as first line agents in patients who have sustained a myocardial infarction. What matters most is that blood pressure is controlled.
Anticoagulation

The benefit of routine anticoagulation in all patients following myocardial infarction is unproven. A period of low molecular weight heparin (LMWH) may be worthwhile in extensive anterior infarction to reduce the risk of mural thrombus, and in obese immobile smokers to reduce the risk of DVT/PTE. It is mandatory to assess all patients for DVT risk.

Continued anticoagulation with warfarin is indicated in proven mural thrombus (3 months anticoagulation or until thrombus resolution) or in patients with atrial fibrillation.

The use of GP2b3aI in combination with thrombolysis cannot be recommended as routine in the setting of STEMI. In two major trials, there was no reduction in thirty-day mortality. Although lower rates of in-hospital reinfarction were observed, this was at the expense of an excess of bleeding complications. They do have a role to play in the setting of primary and rescue angioplasty however. In addition, they are used in the setting of unstable angina and NSTEMI (see page 84).

‘Triple Anticoagulation’

Many patients who require dual antiplatelet therapy (DAPT) after PCI will either be established on long term warfarin or a DOAC or will subsequently require anticoagulation after DAPT, most commonly for atrial fibrillation.

So-called ‘triple anticoagulant’ or ‘triple therapy’ regimes employing aspirin, clopidogrel and warfarin or DOAC are associated with an increased risk of bleeding which is not nullified completely by the addition of antacid therapy, although all patients in this situation should have gastric protection with a PPI. Triple therapy with prasugrel or ticagrelor should generally be avoided because of the increased risk of bleeding compared with clopidogrel.

One option is to use bare metal stents so the duration of DAPT can be reduced – but this is done rarely as the latest generation drug-eluting stents have good evidence for short duration DAPT therapy: BioFreedom/Lumeno Free stents (Leaders Trial), Synergy stent (Senior Trial) and Resolute Onyx stent (Onyx-ONE Trial).

The decision needs to be based on the individual patient and the need for anticoagulation (partly dependent upon the CHA2DS2-VASc score in AF):

https://chadsvasc.org/

In patients with recurrent PTE disease or particularly metallic valves, warfarin is essentially mandatory (although the DOACs should be considered in PTE disease). In this situation, consideration, when using warfarin, should be given to keeping the INR strictly between 2 and 2.5 for PTE patients (or change to a DOAC), and 2.5 and 3 for metallic valves.

Essentially the duration of triple therapy should be decided by weighing up the bleeding risk on triple therapy versus the ischaemic risk.

The HAS-Bled score (see page 117) gives additional information on bleeding risk with anticoagulation. Smartphone apps are available.

The ischaemic risk is higher in those with prior stent thrombosis, stenting of the last remaining patent artery, diffuse multivessel disease (especially diabetics), CKD,
multiple stents, multiple stented lesions, bifurcation stenting, long stented segments (> 60 mm) and CTO PCI.

Generally speaking the aim should be to minimise the duration of triple therapy. In the following table ‘OAC’ refers to drugs that have current trial evidence (rivaroxaban and dabigatran), and these DOACs should be preferred. In patients where warfarin is mandatory similar considerations should apply. Note that the default strategy is one week of triple therapy but the decision on whether to extend triple therapy to one month is at the discretion of the operator.

There is some evidence from the WOEST Trial that using clopidogrel alone with warfarin is safe with no increased risk of stent thrombosis, stroke or MI compared to the triple therapy of aspirin, clopidogrel and warfarin. A more recent study ISAR-TRIPLE, indicate that 6 week duration of triple therapy is not superior to 6 month duration of triple therapy in patients undergoing PCI, who also had an indication for anticoagulation use.

Emerging information is available about the use of DOACs. Rivaroxaban was studied in the ATLAS Trial in ACS patients. The concern however is that the dose used was lower (2·5 mg BD) than the standard dose indicated in patients who do not require DAPT. A more recent trial, from the same investigators, suggested a lower incidence of stent thrombosis and a reduction in mortality. The PIONEER AF-PCI study looked at using rivaroxaban 2·5 mg BD with DAPT, versus rivaroxaban 15 mg OD (a dose used in AF) with a single antiplatelet (mostly clopidogrel) versus warfarin (INR 2-3) and DAPT. DAPT duration was 1, 6 or 12 months. The rivaroxaban strategy was associated with a lower risk of bleeding. There is therefore the option to consider the option of rivaroxaban 15 mg OD and clopidogrel alone.

It is likely that reduced dose DOAC with a P2Y\textsubscript{12} inhibitor will be an option as the recently published RE-DUAL PCI study employing reduced dose dabigatran (110
mg BD) with mostly **clopidogrel** had similar safety and efficacy as the PIONEER AF-PCI study.

A trial of **edoxaban** (ENTRUST-AF PCI) showed equivalence to using **warfarin** in terms of bleeding risk benefit. **Apixaban** (AUGUSTUS trial) showed a lower bleeding risk compared to **warfarin** and also suggested that **apixaban** with monotherapy using **clopidogrel** was safe.

The latest major studies of **rivaroxaban** were the COMPASS trials (in patients with stable cardiovascular disease) which identified that **rivaroxaban** (2·5 mg BD) plus **aspirin** was associated with fewer adverse cardiovascular events, but more major bleeding events vs. **aspirin** alone. Patients with a combination of ischaemic heart disease and peripheral vascular disease appear to derive the most benefit.

During the lifetime of this guideline it is possible that dual therapy with an **anticoagulant** and P2Y₁₂ inhibitor without **aspirin** will be increasingly used after PCI in ACS. Emerging evidence also suggests that 1 week of **aspirin** for low risk patients is safe, although mostly 4 weeks is used.

Switching P2Y₁₂ receptor drugs (Clopidogrel, Prasugrel and Ticagrelor)

There are occasions when there may be reason to consider switching P2Y₁₂ drugs. Reloading with the new drug is recommended for all agents in the acute setting. Switching to **prasugrel/ticagrelor** can be done irrespective of prior **clopidogrel** timing and dosing. Switching **prasugrel** and **ticagrelor** to other agents has to be done 24 hours after last dose.

In the chronic setting reloading with **clopidogrel** is always required. If switching from **ticagrelor** to **prasugrel**, the latter needs to be reloaded.

SPONTANEOUS CORONARY ARTERY DISSECTION (SCAD).

SCAD is a less frequent cause of ACS (~ 4%) and more common in young to middle aged women. A minority of cases occur during or following pregnancy. If recognised as such at the time of angiography it is likely that the affected arteries will be managed conservatively without revascularisation (as most will heal). Those with proximal vessel involvement and poor flow and STEMI presentation more frequently have PCI.

Patients with SCAD should probably be monitored in hospital for up to 5 -7 days as up to 10% of conservatively managed patients will have early recurrence.

Most advocate antiplatelet therapy: not infrequently with **aspirin** alone (standard **DAPT** of course if PCI is undertaken).

β-blockers are commonly used.

ACEI are used but generally only if there is evidence of LV dysfunction or hypertension.

Statin therapy is not recommended routinely after SCAD.

Dr Adlam is happy to be referred these patients as he is an international expert in this area.
TAKOTSUBO CARDIOMYOPATHY

Takotsubo cardiomyopathy, also called apical-balooning syndrome, broken heart syndrome, stress cardiomyopathy, and stress-induced cardiomyopathy, is an increasingly reported syndrome generally characterised by transient systolic dysfunction of the apical and/or mid segments of the left ventricle that mimics myocardial infarction, but in the absence of obstructive coronary artery disease. Cardiac enzymes are usually elevated and the ECG may show features of either STEMI (about 45%) or NSTEMI. If suspected, LV angiography should be undertaken after demonstrating the absence of coronary disease. In patients awaiting angiography, early echocardiography is crucial as the abnormality may only be present for a few days. It is much more common in women, predominantly in the fifth decade of life onwards. Not infrequently presentation follows an episode of emotional trauma such as bereavement or an argument, and can occur in the context of severe sepsis.

LV angiography and/or echocardiography may show a variety of LV regional wall motion abnormalities including apical (82% of patients), mid-ventricular (14-6%), basal (2-2%), or focal (1-5%) akinesis or hypokinesis in a circumferential pattern involving more than one coronary artery territory.

Cardiovascular complications occur in about 50% of patients and inpatient mortality is similar to STEMI (4 - 5%) due to cardiogenic shock, ventricular rupture or malignant arrhythmias.

The degree of LV dysfunction varies but can result in severe heart failure. In patients with significant LVSD standard treatment with ACEI, β-blockers and diuretics is justified. There is an increased risk of LV thrombus and this should be looked for and treated if present with anticoagulation (typically three months or until thrombus has resolved). In patients without thrombus but severe LV dysfunction some advocate anticoagulation until there is recovery. In a third of patients there is also RV dysfunction.

Generally heart failure medication is only necessary for the first few weeks as most (85 - 90%) recover within 4 weeks. There is an argument that β-blockers should be maintained longer term to reduce the risk of recurrence (which can occur in 5 - 10%).

MYOCARDIAL INFARCTION WITH NORMAL CORONARY ARTERIES (MINOCA)

About 6% of patients with AMI are found to have non-obstructive coronary arteries (no stenosis > 50%).

For a diagnosis of MINOCA there has to be clinical evidence of AMI with a rise and fall in the hs-TnI above the 99th percentile upper reference limit and at least one of the following:

- Symptoms of myocardial ischaemia
- New ischaemic ECG changes
- Development of pathological q waves
- Imaging evidence of new loss of viable myocardium or regional wall motion abnormality in a pattern consistent with an ischaemic aetiology
- Identification of coronary thrombus angiographically

In addition there must be no other overt specific cause for the acute presentation.
About a third present as STEMI and two thirds NSTEMI. Prevalence is about 6% of ACS. It is more common in younger patients, females (43% vs 24%), non-white patients (25% vs 12%) when compared to patients with obstructive coronary disease.

Possible aetiologies include SCAD, coronary spasm, coronary thrombus/embolus, myocarditis, Takotsubo cardiomyopathy, hypertensive heart disease, tachycardiomyopathy, pulmonary embolism, sepsis, ARDS and ESRF.

Non-invasive imaging is pivotal and echo is essential in the work up (structural heart disease, or the presence of ASD, intracardiac thrombus, myocardial tumour or myxoma). Early CMR also plays an important role. Studies have evaluated the diagnostic yield of CMR and were able to find a definitive diagnosis in 71% of the patients (19% MI, 33% myocarditis, 12% Takotsubo cardiomyopathy, 2% hypertrophic cardiomyopathy, 2% dilated cardiomyopathy, 3% other).

In select cases, if no cause can be found, it can be useful to perform CT angiography. Occasional IVUS or OCT will be performed.

CARDIAC COMPLICATIONS AND COVID-19

Elevation in \(\text{hs-TnI} \) occurs in up to a third of hospitalised patients. In the majority this is not due to type 1 MI, but if there are ECG changes and symptoms of STEMI or NSTEMI they should be treated as such.

More commonly \(\text{hs-TnI} \) elevation is due to stress cardiomyopathy, hypoxic injury, myocarditis, right heart strain, microvascular dysfunction and systemic inflammatory response syndrome.

Arrhythmias occur in 5 – 20% and most are asymptomatic.

Heart failure is the most common symptomatic complication.

Myocarditis and pericarditis have been reported in association with Covid vaccines manufactured by Pfizer and Moderna. It appears to predominantly affect male adolescents and young adults. Most cases are mild.
MANAGEMENT OF COMPLICATIONS OF STEMI

MANAGEMENT OF LEFT VENTRICULAR FAILURE

Early LVF
Basal crepitations on auscultation and/or minor changes on CXR (without significant dyspnoea) are rapidly treated with oral diuretic therapy with furosemide 40 - 80 mg or bumetanide 1 - 2 mg. If there is concern about low serum potassium, co-amilofruse 5/40 (combined amiloride and furosemide) is an alternative. If there is clear evidence of LVF associated with an extensive myocardial infarction (and large enzyme rise) start treatment with an ACEI 24 hours post MI while awaiting confirmation with echocardiography. For those intolerant of ACEI, an ARB (valsartan, candesartan) can be used.

Eplerenone is a selective aldosterone antagonist licensed for use in stable patients with systolic dysfunction and evidence of heart failure after a recent myocardial infarction. Initial dose is 25 mg OD.

Established Pulmonary Oedema
Significant dyspnoea associated with orthopnoea and often a productive cough with white, frothy sputum. The patient should be sat up and given oxygen together with IV loop diuretics furosemide 50 - 100 mg and morphine (2.5 - 5.0 mg) plus an anti-emetic. Furosemide may need to be re-administered at regular intervals. Oxygen saturations need to be monitored.

In more severe cases, IV GTN (starting at 2 mg/hr) should be given if systolic BP can be maintained above 90 mmHg. GTN should be avoided if there is evidence of right ventricular infarction. IV digoxin 0.5 mg over 30 minutes may occasionally help, but in the absence of atrial fibrillation should probably be avoided (see page 231). If there is associated bronchospasm, salbutamol 0.5 mg via nebuliser can be beneficial, as can aminophylline 250 mg IV slowly over at least 10 minutes can similarly be helpful but should be avoided if tachycardic. An urgent echo is indicated.

Non-invasive ventilation should be considered in more intractable cases and possibly mechanical ventilation if recovery is thought possible. Alternatively intraaortic balloon pump (IABP) support is likely to benefit the patient (see page 49).

LVF with Hypotension (Cardiogenic Shock)
In this scenario, cardiac output is low and dyspnoea may not be a dominant problem. Systolic BP is usually below 90 mmHg, and the patient may be pale and drowsy, with cool peripheries and oliguria. The JVP may be elevated and a gallop rhythm heard on auscultation. Specific management is warranted for severe mitral regurgitation which may be silent - and therefore echocardiography is indicated. Mortality is high (70%) with cardiogenic shock, and is usually inevitable if treatment and correction is delayed, so urgent active management is essential.

Intensive monitoring is important and should include an initial CXR, central line, urinary catheter, frequent automated BP measurement and a baseline echocardiogram. Renal function should be checked. Full invasive monitoring using a Swan-Ganz catheter (despite published limitations) and a radial artery cannula may be helpful in some cases.
Recommended management:

In addition to an IABP,

High concentration oxygen. In the context of severe dyspnoea and acidaemia, CPAP should be considered.

Diuretics. Modest doses of IV furosemide (25 mg) may reduce pulmonary congestion without further reducing the BP.

Inotropes including dopamine and dobutamine may be beneficial.

Dopamine at lower doses (2.5 - 5.0 µg/kg/min) has a specific effect on dopaminergic receptors producing dilatation of renal, coronary, splanchnic and cerebral arteries and, at a higher dose (5 - 15 µg/kg/min); β₁-receptors are activated with positive inotropic and chronotropic effects. A true ‘renal dose’ is 1 - 3 µg/kg/min. At high dose (> 15 µg/kg/min), α receptors are also activated with undesirable vasoconstriction and reduced renal blood flow (see page 196).

Dobutamine (1 - 15 µg/kg/min) is a β₁-receptor agonist that does not activate dopaminergic receptors and has predominant positive inotropic effects with only a moderate activity on heart rate (see page 244).

Both dobutamine and particularly dopamine should ideally be infused via a central line.

Other inotropes such as digoxin may be beneficial, but should be avoided if there is significant bradycardia, ventricular arrhythmias or renal impairment.

Isoprenaline, adrenaline, glucagon and salbutamol infusions have been used in the past, with limited benefit, and are not normally recommended in cardiogenic shock.

Vasodilators reduce peripheral resistance, improving cardiac output and organ perfusion, thus reducing ventricular work and myocardial oxygen consumption. In cardiogenic shock, arterial or combined arterial/venous dilators should be chosen. Their use should be monitored carefully and dosage reduced or stopped if the systolic BP cannot be maintained above 85 - 90 mmHg.

GTN (2 - 6 mg/hr) by infusion pump is the treatment of choice, especially if there is evidence of on-going ischaemia. GTN should be avoided if there is evidence of right ventricular infarction. Clearly care needs to be taken as all patients may subsequently become hypotensive.

Sodium nitroprusside should be reserved for when there is significant hypertension in the setting of myocardial infarction. GTN should be used in preference because of the possibility of coronary steal associated with the use of sodium nitroprusside. If used the latter should be started at 10 - 15 µg/min and increased to a maximum of 400 µg/min. The infusion set should be foil wrapped and used within 24 hours.

ACEI given orally are preferable in chronic low output failure when the situation is more stable.

In patients who are not responding to diuretics, consideration should be given to the use of haemofiltration.

In severe intractable cases in which recovery is deemed possible, especially younger patients, ECMO should be considered.
All patients with cardiogenic shock should be commenced on prophylactic LMWH as the risk of thromboembolic complications is high. Consideration should be given to early revascularisation.

Right Ventricular Myocardial Infarction

Isolated RV infarction is uncommon but may complicate a large inferior myocardial infarction. Hypotension with an elevated JVP and absence of pulmonary oedema is suggestive. RV leads on admission are essential in the diagnosis and the most sensitive lead is RV4. Q waves with ST elevation in V1 - V3 is also a marker of RV infarction. Right ventricular leads should always be recorded in any patient presenting with an inferior or infero-posterior infarct immediately ON ADMISSION. Echo may also help and will exclude pericardial effusion and tamponade.

More commonly RV infarction causing hypotension occurs together with LVF and the management and diagnosis becomes far more complex. In this scenario, Swan-Ganz monitoring can prove useful. It helps to maintain the wedge pressure ~ 15 mmHg. To achieve this IV 0·9% sodium chloride needs to be given (200 - 250 ml over 10 minutes, followed by up to 2 litres in the first few hours and 200 ml/hr thereafter) to increase RV filling pressure. If there is co-existing LVF (wedge pressure > 15 mmHg), inotropes (especially dobutamine) should also be used. Diuretics and vasodilators such as nitrates and ACEI should be avoided.

Pericarditis and Dressler Syndrome

A localised pericardial rub is sometimes present within a few hours of anteroseptal infarction, and is usually transient and asymptomatic. A more generalised pericardial friction rub commonly occurs at 2 - 5 days following extensive STEMI, and is associated with typical pericarditic chest pain (sharp, worse on inspiration and on reclining). The pain usually responds readily to NSAIDs although their use (apart from aspirin) should be strictly limited if possible in and around the time of myocardial infarction as NSAIDs may exacerbate infarct expansion. In medium to long term use, Naproxen has been identified as having the safest CV risk profile of all NSAIDs. Anticoagulation in these patients should be used with caution or with echo monitoring because of the theoretical risk of tamponade.

Dressler syndrome occurs between 2 and 10 weeks following myocardial infarction. It is clinically indistinguishable from postcardiotomy syndrome. The pain is associated with a pericardial rub, transient pleural effusions, pyrexia, anaemia, and elevated ESR or CRP. NSAIDs are helpful, but occasionally steroids or colchicine (0·5 mg BD) may be required.

Tamponade is relatively rare following myocardial infarction and with Dressler’s syndrome. If suspected clinically (elevated JVP, low BP with pulsus paradoxus – drop in BP on inspiration, quiet heart sounds etc.), an urgent echocardiogram should be arranged. Drainage of post-infarct pericardial effusions or effusions in other settings (uraemia, carcinoma, rheumatoid, etc.) should generally be performed under X-ray screening by experienced cardiologists and with echocardiography equipment and sonographers immediately available.

Pyrexia post MI

Low grade pyrexia is very common following MI and does not necessarily indicate infection. The use of antibiotics should generally be avoided unless there are clear signs of infection.
MECHANICAL DEFECTS AFTER MYOCARDIAL INFARCTION

Severe Mitral Regurgitation

Mitral regurgitation is common in the first few days after STEMI. It can occur due to annular dilatation secondary to LV dysfunction, papillary muscle dysfunction or rupture following an inferior myocardial infarction (the posteromedial papillary muscle is supplied by the posterior descending artery branch of the RCA or circumflex). It is more commonly due to papillary muscle dysfunction rather than rupture. The patient usually presents 2 - 7 days post myocardial infarction with severe orthopnoea and PND, hypotension, and there is usually a loud pansystolic murmur at the apex and left sternal edge. In some patients the murmur may be very quiet or absent and therefore an index of suspicion is required. The CXR usually shows pulmonary oedema and echocardiography is usually diagnostic. Surgical repair may be required following stabilisation using an IABP (page 49).

Ventricular Septal Defect

This is a now uncommon complication (1 - 2%) of STEMI involving the septum. Anterior or anterolateral infarcts are slightly more common (apical VSD) than inferior infarcts (basal inferior VSD). There is usually profound and sudden haemodynamic deterioration with hypotension. Dyspnoea is not usually a major feature. The JVP is often elevated and there is a loud pansystolic murmur at the left sternal edge, often with a thrill, and pulmonary plethora on CXR. Echocardiography is usually diagnostic but occasionally they can be missed. Urgent referral is required, as IABP (page 49) is a useful supportive measure prior to surgical repair or device closure. Early discussions with surgeons are crucial.

If patients are very elderly or have significant co-morbidity conservative therapy may be indicated, as operative mortality is extremely high. Patients with VSDs in association with inferior infarction have a particularly high mortality (70%). Free wall rupture is usually fatal within a few minutes.

Left Ventricular Aneurysm

True aneurysm formation after full thickness myocardial infarction is not uncommon and usually presents 2 - 3 months following infarction with dyspnoea, hypotension and an abnormal parasternal pulsation. Occasionally troublesome ventricular arrhythmias may occur. Echo and LV angiography are helpful in diagnosis. Surgical resection may prove helpful. Patients with anteroapical infarcts are at greatest risk. A discrete posterobasal aneurysm may less frequently develop following infero-posterior infarction.

Myocardial rupture is usually rapidly fatal, but occasionally the rupture is contained and a ‘false’ aneurysm develops, which may be amenable to surgery.

Intracardiac Thrombus

Mural thrombi typically develop within the first week following anterior STEMI with expanded or aneurysmal akinetic or dyskinetic segments, especially those involving the LV apex. The major risk is systemic embolisation. If LV thrombus is suspected or visualised on echocardiography (or MRI), anticoagulation with therapeutic UFH or LMWH followed by warfarin is indicated. Warfarin should be continued for 3 - 6 months (or until thrombus resolution). There is no trial evidence to support the use of DOACs.
Patients with atrial fibrillation following myocardial infarction are at increased risk of emboli from left atrial thrombi. These patients should also be **anticoagulated**. If atrial fibrillation occurs early post MI early cardioversion should be considered if **anticoagulation** is undesirable (such as patients requiring dual antiplatelet therapy).

Cardiac Rehabilitation & Secondary Prevention

All patients who sustain a myocardial infarction (including NSTEMI) should be referred for cardiac rehabilitation (CR). Patients should be seen prior to discharge from hospital and appropriate and willing patients will subsequently be followed up as outpatients and enrolled into a programme combining exercise with education. CR provides a whole range of supportive services and education. For more information regarding the components of CR see the following link:

https://www.bacpr.com/resources/BACPR_Standards_and_Core_Components_2017.pdf

All patients should be advised to have annual vaccination against influenza.

Smoking There is overwhelming evidence that smoking cessation results in more than halving of mortality compared to those who continue to smoke. One observational study in those with angina indicates the benefits of smoking cessation. Those who continued had around five times the risk of a coronary event over ten years than those who quit. The benefit falls with increasing age. Observational studies also show that patients post MI who continue to smoke are at an increased risk of death of around 50% over five years compared to those who stop. Patients who have had CABG and who smoke have also been shown to have a reduced survival and an increase in non-fatal MI and angina relative to non-smokers. Thus, there is observational evidence in various groups of CHD patients that smoking cessation is beneficial.

Gentle advice and strong support for the patient are required and should be initiated whilst in hospital, but continued following discharge. Referral to stop smoking services should be recommended. Concerns regarding the use of nicotine replacement therapy (NRT) are largely unfounded. Analyses have now documented the lack of association between NRT and acute cardiovascular events and the risks of NRT for smokers, even for those with underlying cardiovascular disease, are small and are substantially outweighed by the potential benefits of smoking cessation.

Vaping appears relatively safe and is associated with a higher degree of success in stopping using cigarettes.

Varenicline tartrate (Champix) is a smoking cessation medication which can be helpful in smokers who have struggled to stop. Care needs to be taken with patients with previous psychiatric illness or suicidal ideas.

Diet and Dietary Supplements

A Mediterranean type diet appears to result in a reduction of reinfarction in the following few years. All patients should be advised to take a diet low in saturated fat, high in polyunsaturated fat and high in fruit and vegetables. One study suggests that eating fatty fish at least twice a week reduces the risk of reinfarction and death, although this may not be associated with a substantial benefit in the longer term.

Many patients will ask for dietary advice and it is worth being aware of general recommendations regarding a cardioprotective diet:
• Minimizing intake of foods containing refined sugars, including fructose.
• Keeping salt intake low (less than 6 g per day). Therefore, not adding salt at the table and keeping processed foods to a minimum.
• Choosing wholegrain varieties of cereals, breads, and other starchy foods.
• Eating at least 4 to 5 portions per week of a mixture of unsalted nuts and seeds. (One portion is about 30 g).
• Eating at least two portions of fish per week, including oily fish if the person wishes (pregnant women should limit their oily fish intake to no more than two portions per week, and avoid marlin, shark, and swordfish which may contain relatively high levels of methylmercury).
• Eating at least five portions of fruits and vegetables per day.
• Using olive oil or rapeseed oil for spreads, salad dressings, cooking, baking, and other food preparation rather than animal-based fats such as butter.
• Advising that total fat intake should be 30% or less of total energy intake, and saturated fat (which is mainly from animal sources) should be 7% or less.
• Dietary supplements including omega-3 capsules or supplemented foods are not recommended as there is no good evidence that they reduce CVD risk.

Patients should also be encouraged to look at the NHS and BHF websites:

https://www.nhs.uk/live-well/eat-well/

https://www.bhf.org.uk/informationsupport/support/healthy-living/healthy-eating
NSTEMI & UNSTABLE ANGINA

Patients with typical cardiac chest pain and a normal ECG on admission should be assumed to have unstable angina (UA), although in a small percentage subsequent ECGs will be abnormal, and cardiac enzymes will be elevated confirming myocardial infarction. As with patients with definite myocardial infarction, cardiac enzymes should be repeated. *Hs-TnI* levels should be measured on admission and 3 hours after admission. A single *hs-TnI* level is enough if the onset of symptoms was 3 or more hours prior to presentation. Patients with elevated *hs-TnI* (NSTEMI) are at higher risk and identify themselves as patients who may benefit from a more aggressive approach including the use of GP2b3aI (*Tirofiban: Aggrastat®*), and revascularisation.

Initial Management

All patients should receive aspirin 300 mg initially and then 75 mg daily and LMWH (*enoxaparin*). The ECG should be repeated at frequent intervals after admission to assess resolution and exclude progression to infarction. If patients’ *hs-TnI* levels remain normal, with a normal ECG, early discharge should be considered. If a high index of suspicion remains, pre-discharge treadmill testing or a functional test should be considered. In a large proportion of patients, angiography will be undertaken prior to discharge. This usually happens after risk assessment and medical stabilisation. Referral is via ICE and should include documentation of the GRACE risk score (see below).

Risk Assessment

In patients who have elevated *hs-TnI*, a decision needs to be made as to whether the individual is at medium or high risk. In patients presenting with acute coronary syndromes, there is a 2 - 5% risk of death within one month, and the risk of myocardial infarction is 5 - 15% over the same period. Recurrent symptoms requiring hospital readmission occur in 26 - 35% within one year. Overall 5 - 15% will have died at one year.

A variety of methods are available to assess risk. The GRACE risk score can be found online: https://www.mdcalc.com/grace-acs-risk-mortality-calculator

Variables included are age, Killip class, heart rate, systolic BP, serum creatinine, presence of ST segment deviation, cardiac arrest at presentation and cardiac enzyme elevation (for in-hospital death but not 6 month death).

Care should be taken using this scoring system in younger patients as their risk can be underestimated and in older patients their risk over-estimated. Patients with a projected 6 month mortality greater than 3% should be deemed medium or > 6% high risk and should be considered for inpatient angiography. The TIMI risk score is easier to perform and can help to complement the GRACE risk score: https://www.mdcalc.com/timi-risk-score-ua-nstemi

Special attention should be paid to patients presenting with widespread deep and symmetrical anterior T wave inversion. These patients often have a critical lesion in the proximal LAD (so-called **LAD syndrome** or **Wellens syndrome**) and the threshold for early in-patient angiography should be lower.
In addition to stratifying risk, patients should be selected for their suitability for revascularisation. Patients with significant co-morbidity and in whom consent is impossible or not given should be managed medically.

In patients with end stage renal failure special arrangements need to be made with regards to ensuring early access to dialysis. A large proportion will be referred directly from the renal unit and so a discussion can take place regarding a treat and return plan. The catheter lab co-ordinator should be involved with regards to identifying a specific operating list for the patient to be allocated along with liaison with the bed managers to ensure bed availability. For those with ESRF transferred from other centres, an early discussion regarding subsequent dialysis support is mandatory.

Table 2: TIMI Risk Score.

<table>
<thead>
<tr>
<th>TIMI Risk Score: 1 point Each for Presence of</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Age > 65 years</td>
</tr>
<tr>
<td>• Prior stenosis > 50%</td>
</tr>
<tr>
<td>• > 3 CAD risk factors</td>
</tr>
<tr>
<td>• Aspirin in last 7 days</td>
</tr>
</tbody>
</table>

5 - 7 points = High Risk, 3 - 4 points = Intermediate Risk, 0 - 2 points = Low risk

Antiplatelet Therapy

All patients should receive **aspirin** 300 mg initially and then 75 mg daily. For those with apparent or proven **aspirin** allergy a desensitisation regime can be used (see page 240). **Ticagrelor** should be considered as first choice for patients with a confirmed diagnosis of NSTEMI irrespective of any revascularisation strategy. When a diagnosis of NSTEMI has been confirmed with an elevated **hs-TnI** result, a loading dose of 180mg should be administered as a one-off followed by 90 mg twice daily for 12 months (plus **aspirin** 75 mg daily lifelong). In patients who have already been loaded with **clopidogrel** and who are selected to be switched to **ticagrelor**, a loading dose is still required.

Some patients will be deemed best served with surgical revascularisation. **Clopidogrel** and especially **ticagrelor** should ideally be stopped for several days prior to CABG but is dependent on the preferences of the individual surgeon (see page 68).

Anticoagulation Therapy

LMWH should be administered in medium and high risk patients for the first 48 hours and then stopped if pain free. (**Enoxaparin** 100 IU/kg BD until pain-free for > 48 hours). Bleeding risk MUST be assessed: active bleeding, acquired bleeding disorder (such as acute liver failure, concurrent use of **anticoagulants** known to increase risk of bleeding, concurrent use of antiplatelets, recent head trauma).

There is a potential role for **rivaroxaban** in the setting of NSTEMI, in particular in patients who are managed medically and who do not undergo PCI. In the ATLAS trial patients with ACS were treated with **aspirin**, **clopidogrel** and low dose **rivaroxaban** (2·5 mg BD). Although a large proportion of patients underwent PCI in this trial, the trial utilised **clopidogrel** whereas we recommend **ticagrelor** in ACS.
patients undergoing PCI. In patients treated with **clopidogrel** however, **rivaroxaban** should be seriously considered. Patients bleeding risk should be assessed (see page 86) and the usual cautions with **rivaroxaban** should be applied (see page 117). Treatment is for 12 months.

Routine coagulation testing and monitoring is not required with **LMWH** but it is expensive and its continued use beyond admission should be reserved for patients with convincing ECG evidence of ischaemia or elevated **hs-TnI**. Patients who are definitely ischaemic should also be managed on CCU or dedicated cardiology beds. With prolonged use, the patient’s full blood count must be monitored.

Thrombolytic therapy is of no benefit in UA/NSTEMI, and may be associated with increased hazard in patients with prolonged chest pain and ST depression or T wave inversion on the ECG. This is true even for patients with ST depression of greater than 3 mm in whom myocardial infarction is almost always the ultimate diagnosis.

Glycoprotein IIb/IIIa Inhibitors

High risk patients should be treated with **tirofiban** and **UFH** (see page 241). These should be used for a minimum of 48 hours and a maximum of 108 hours if the patient remains unstable. These patients should all be discussed with senior cardiologists with a view to early in-patient angiography and potential revascularisation. Platelet counts should be monitored at least daily. If the **tirofiban** infusion is completed before the angiogram, the **UFH** should be continued. Further **GP2b3aI** can be administered at the time of intervention if necessary. This may take the form of **abciximab** (**ReoPro®**) or further **Tirofiban**. Patients should be continued on **clopidogrel** or **ticagrelor** for 12 months following the revascularisation procedure.

Bleeding Risk

Bleeding risk should be considered in all patients presenting with ACS. Risk factors for bleeding and its adverse consequences include advanced age, low body mass, female sex, renal impairment, and pre-existing anaemia. It is also clear that bleeding in the context of ACS carries adverse prognosis. There are numerous bleeding classification systems and bleeding scores. The CRUSADE bleeding score is a means of quantifying the risk of major bleeding in ACS cohorts and can be used to estimate the risk in individual patients. There is a risk calculator available online at: https://www.mdcalc.com/crusade-score-post-mi-bleeding-risk.

Medical Therapy

Having anticoagulated the patient, manoeuvres to lower the resting heart rate below 60 and lower the blood pressure to less than 140/90 are required.

For the majority of oral preparations should be used (eg. **bisoprolol** 1.25 - 10 mg OD, **atenolol** 25 - 100 mg OD, **diltiazem** 60 - 120 mg TDS or equivalent, **verapamil** 40 - 120 mg TDS or equivalent). **Diltiazem** may be beneficial. In patients who already have a resting heart rate of 50 - 60, alternative anti-anginal therapy such as **amiodipine** (5 - 10 mg daily) can be tried although its onset of action is delayed. **Nifedipine** should be avoided as monotherapy but may be beneficial when used with β-blockers.

If more urgent control is needed, IV preparations can be used. This is best achieved with IV **atenolol** (5 - 10 mg), or **metoprolol** (5 - 15 mg). **β-blockers** have been shown to reduce the risk of developing myocardial infarction. If short-acting **β-**
blockade is desirable because of concern over side effects, **esmolol** can be used (see page 229). In most patients oral **β-blockers** are employed.

Early intravenous **β-blockade** should not be given in the presence of clinical signs of heart failure, hypotension (systolic BP < 100 mmHg), bradycardia (< 60 bpm) or 2nd/3rd degree heart block, a history of asthma or COPD, or audible bronchospasm, concurrent treatment with **verapamil** (risk of severe bradycardia).

Alternatively, AV nodal blocking **calcium antagonists** such as **diltiazem** (0-25 mg/kg over 2 minutes) or **verapamil** (5 - 10 mg IV over 2 minutes) may be employed.

For additional analgesia and control of ischaemia, **nitrates** can also be used. **GTN** (if using 0-1% solution, infuse at 1 - 10 ml/hr), or **isosorbide dinitrate** (1 - 10 mg/hr) can be used IV. The rate should be reduced if systolic BP drops below 100 mmHg. **Nitrate** tolerance is a problem and infusions should not generally be used for greater than 24 hours. Patients should be transferred to oral therapy with nitrate-free periods of 6 - 10 hours. Use of parenteral **nitrates** suggests that an early invasive strategy should be considered.

Nicorandil (5 - 30 mg BD) is an ATP-dependent **potassium channel activator** that has an uncertain role to play in the management of unstable angina. Its action is similar to that of **nitrates**, but it may have a beneficial role in ischaemic preconditioning, reducing transient myocardial ischaemia. One study suggests that patients with stable angina have a reduction in coronary events when treated with **nicorandil**. It has no role to play in patients already established on **nitrates**.

Ivabradine (5 - 7.5 mg BD) is a sinus node blocking agent which may be an alternative rate controlling agent especially where a **β-blocker** is contra-indicated or not tolerated. It should not be introduced if heart rate is below 70 bpm. It can be used safely in patients with impaired LV function. Indeed, results from the Signify Study suggests caution in patients with preserved LV function. Lower initial doses should be used in the elderly (2.5 mg BD). Do not use alongside **diltiazem** or **verapamil**.

Ranolazine, a sodium channel inhibitor, is licensed as adjunctive therapy in patients who are inadequately controlled or intolerant of first-line anti-anginal drugs. The dose is initially 375 mg BD increasing to a maximum of 750 mg BD. Its use is mainly in patients with chronic stable angina rather than in the acute setting. A trial in the context of ACS showed **ranolazine** did not affect the composite of cardiovascular death, MI, or recurrent ischaemia, however, further analysis revealed a reduction in angina and improvement in exercise duration with an acceptable safety profile. It is contraindicated if the GFR is < 30. **Ranolazine** can cause prolongation of the QT interval and this should be evaluated after commencement. Numerous drug interactions are possible (**simvastatin**, **verapamil**, **diltiazem**, **digoxin** and **CYP3A4 inhibitors**) and so attention to BNF advice is mandatory.

Additional Measures

It is important to address risk factor reduction in the same way as patients with STEMI. Lipids, blood pressure, glucose, smoking and lifestyle all need to be considered. It would therefore seem eminently reasonable to commence all patients on **statins** during their admission. **All patients should also be considered for an ACEI**, even in the absence of LV dysfunction. The HOPE study showed **ramipril** benefited patients with vascular disease, and EUROPA showed similar benefit
employing *perindopril* in patients with stable coronary disease. It is likely that *ACEI* confer benefit in all patients with coronary disease.

Angiography

A large number of patients admitted with unstable angina and NSTEMI will need coronary angiography (see page 40). The decision to list is made by cardiology SpRs and consultants. Numerous factors need to be considered and it is not appropriate to simply undertake angiography in every patient. Co-morbidities and previous cardiac status must be taken into consideration.

Listing for procedures can be done via an ICE request AFTER the patient has been consented. Go to ‘Requesting’ and select ‘Service Referrals’. The left hand tab selection is ‘Cath Lab’. For ACS patients select ‘Cardiac Angio Lt heart study’ and for those with prior grafts ‘Cardiac Angio LV and Coronary Graft’. Then select the appropriate procedure: ‘Cath +/-’ or (if angiography has already happened and the patient requires a PCI): ‘PCI only’. Named consultant is default ‘no’ unless a specific consultant needs to do the patient.

Numerous fields require completion and it is useful having the relevant information to hand first:

- Brief summary of presentation
- **Precise** date & time of admission?
- **Precise** date & time of symptom onset?
- Peak troponin?
- Grace score (% risk at 6 months)?
- Smoking status?
- Hypertension?
- Hyperlipidaemia?
- Family history?
- Diabetes (and how treated)?
- Cholesterol level?
- Creatinine level?
- eGFR
- Haemoglobin level?
- Platelet count?
- INR (if applicable)?
- Allergies?
- MRSA status?
- Procedural risk factors (listed on ICE)?
- Antiplatelet regime?
- Prior angiogram?
- Previous PCI (details)?
- Previous CABG (details)?
- Echo (result)?
- Functional scan (result)?
- Warfarin?
- DOAC?
- Senior reviewer’s name?
- Consented (must be prior to referring)?
- Consented by?
- Named list (specific operator to do case)
STABLE ANGINA

Angina most commonly takes the form of chest discomfort provoked by effort or emotion and relieved by rest. Only radiated symptoms may be experienced such as isolated throat tightness or arm heaviness. Exertional breathlessness may likewise represent an ‘angina equivalent’, especially in diabetics and/or hypertensives. When severe, angina may be accompanied by autonomic features such as fear, sweating and nausea. It may be difficult to distinguish patients with gastro-oesophageal reflux disease, musculoskeletal discomfort or pulmonary disease. The coronary risk factor profile may be helpful in this regard, as chest discomfort is more likely to represent coronary artery disease in an individual with two or more existing risk factors, e.g. cigarette smoking, hypertension, diabetes mellitus, hypercholesterolemia, a family history of premature coronary artery disease, or the presence of other acquired vascular disease.

If angina is suspected, consideration should be given to further investigation in order to establish the likelihood and extent of underlying coronary disease. Potential associated cardiac and cardiovascular conditions such as valvular heart disease and hypertension should be identified, as these present important implications for both the investigation and management of angina.

Angina usually reflects coronary artery disease. However aortic stenosis, hypertensive heart disease and hypertrophic cardiomyopathy may cause typical symptoms in the absence of coronary disease. Also, there are patients who experience recurrent ‘angina’ despite being demonstrated to have a structurally normal heart with angiographically normal coronary arteries.

Assessment

Initial assessment should include a good history:

- precipitants of anginal attacks
- relieving factors
- stability of symptoms
- risk factors (smoking history, high BP, lipids, diabetes, prior CV disease)
- occupation
- assessment of the intensity, length and regularity of exercise
- basic dietary assessment
- alcohol intake
- drug history
- family history

Angina is unlikely if the pain is continuous or very prolonged, unrelated to activity, brought on by breathing or associated with other symptoms such as dizziness and dysphagia.

Examination:

- weight and height (to allow calculation of BMI) or waist / hip ratio
- blood pressure
• presence of murmurs, especially that of aortic stenosis
• evidence of hyperlipidaemia
• evidence of peripheral vascular disease and carotid bruits (especially in diabetes).

Investigations

Initial investigations should include a full blood count, biochemical screen including glucose (HbA1c if diabetes suspected) and a full lipid profile. Thyroid function is not essential as a routine.

A resting 12-lead ECG provides information on rhythm, presence of heart block, previous myocardial infarction and myocardial hypertrophy and ischaemia.

The presence of an abnormal ECG supports a clinical diagnosis of coronary artery disease. ST/T abnormalities have been correlated with abnormalities of left ventricular function and left anterior descending artery stenosis. QRS abnormalities have been associated with abnormal findings on angiography.

An abnormal ECG also identifies a patient at higher risk of suffering new cardiac events in the subsequent year. However, a normal ECG does not exclude coronary artery disease. In a review of 109 patients who had normal ECGs, 39% still had cardiac pain and 90% of those subjected to angiography showed significant coronary artery disease.

Before proceeding with further investigations, the likelihood of angina should be considered. Latest guidance from NICE (CG95, March 2010) suggests:

- If the estimated likelihood of CAD is 61 - 90%, offer invasive coronary angiography as the first-line diagnostic investigation if appropriate
- If the estimated likelihood of CAD is 30 - 60%, offer functional imaging as the first-line diagnostic investigation (MRI and DSE should largely be preferred over MPS)
- If the estimated likelihood of CAD is 10 - 29%, offer CT calcium scoring as the first-line diagnostic investigation (less useful in the elderly)
- Do not use exercise ECG to diagnose or exclude stable angina for people without known CAD

Table 3: Percentage of people estimated to have CHD according to typicality of symptoms, age, sex and risk factors (adapted):

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Non-anginal chest pain</th>
<th>Atypical angina</th>
<th>Typical angina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>35</td>
<td>Lo</td>
<td>Hi</td>
<td>Lo</td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>9</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>23</td>
<td>59</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>69</td>
<td>9</td>
</tr>
</tbody>
</table>

UHL Cardiology Guideline, Trust Ref C268/2016.

NB: Paper copies of this document may not be most recent version. The definitive version is held on InSite Documents.
For men older than 70 with atypical or typical symptoms, assume an estimate > 90%.
For women older than 70, assume an estimate of 61 - 90% EXCEPT women at high risk AND with typical symptoms where a risk of > 90% should be assumed.

Values are per cent of people at each mid-decade age with significant coronary artery disease (CAD).

Hi = High risk = diabetes, smoking and hyperlipidaemia (total cholesterol > 6.47 mmol/l).

Lo = Low risk = none of these three.

The shaded area represents people with symptoms of non-anginal chest pain, who would not be investigated for stable angina routinely. Note: These results are likely to overestimate CAD in primary care populations. If there are resting ECG ST-T changes or Q waves, the likelihood of CAD is higher in each cell of the table.

Exercise Testing See page 29.

CT calcium scoring This should be considered when the likelihood of chest pain being due to angina is 1 - 29%. If the score is zero there is very minimal likelihood there is significant coronary disease. If the score is 1 - 400 consideration should be given to CTCA or stress perfusion imaging. Above 400, coronary angiography should be seriously considered if appropriate.

CT coronary angiography (CTCA) A low resting heart rate is essential and medication (usually β-blockers or ivabradine) may need to be administered, possibly temporarily, to achieve this (target 50 - 60). Patients need to hold their breath for about 20 seconds. CT has advantages over conventional angiography insofar as it gives information regarding plaque characteristics and composition. Difficulties still exist however when there is significant vessel calcification. NICE recommend this imaging modality in patients with an intermediate risk of coronary disease. Some cases will be sent for FFR analysis (CT-FFR).

Perfusion Imaging Functional testing can be performed employing stress myoview scanning (see page 38), stress perfusion CMR scanning (see page 37) or stress echocardiography (see page 37). Previous radiation exposure and patient preferences need to be taken into account. NICE recommendations are patients with a risk of 30 - 60% should undergo functional imaging.

Angiography Patients with a risk of 61 - 90% should be considered for angiography if appropriate. In addition, patients who have had abnormal functional tests should also be considered for angiography, especially if the symptoms are not settling on medication and when revascularisation might be considered an option.

Drug treatment

All patients should be treated with aspirin 75 mg OD. For those allergic or intolerant of aspirin, clopidogrel 75 mg OD should be used. Enteric coated aspirin does not prevent major gastrointestinal complications of aspirin therapy and are significantly more costly than standard dispersible formulations.

All patients should be prescribed sublingual GTN and instructed on its use.

For symptom control, β-blockers have been shown to be as effective in the prevention of long-term angina symptoms as the other available classes of drugs. Patients receiving these drugs (either singly or in combination therapy) benefited
equally or significantly more in terms of anginal relief than patients on alternative monotherapies.

In addition, \textit{\beta-blockade} in high risk patients reduces cardiovascular mortality and morbidity. Supporting evidence is drawn from post-myocardial infarction trials and trials of patients taking \textit{\beta-blockers} for any reason. Long term \textit{\beta-blockade} remains an effective and well-tolerated treatment that reduces mortality and morbidity in patients after myocardial infarction. Patients who have had a myocardial infarction or currently have angina and are given \textit{\beta-blockers} have a lower rate of mortality and morbidity.

\textit{\beta-blockers} should not be stopped suddenly, as this may be associated with an increased risk of an adverse coronary event.

Rate limitation should be the goal in patients with a normal chronotropic response to exercise. This is best achieved with \textit{\beta-blockers} and non-dihydropyridine \textit{calcium channel blockers} (diltiazem or verapamil). These are considered to be more effective than short-acting dihydropyridines, which may lead to tachycardia in some patients.

Long-acting \textit{nitrates} (isosorbide mononitrate and potassium channel opening drugs (nicorandil) are effective first line agents compared with placebo. Prescription of long-acting nitrates should be done in such a way as to avoid \textit{nitrates} tolerance. There is \textit{no value} in adding a \textit{nitrates} to a patient established on nicorandil and vice versa.

There is evidence to support the use of isosorbide mononitrate or a calcium channel blocker as second line agent to a \textit{\beta-blocker}. Although one study demonstrated the effectiveness of adding diltiazem to a \textit{\beta-blocker}, the cautions cited in the BNF should be observed.

\textit{Ivabradine} (5 - 7.5 mg BD) is a sinus node blocking agent which may be an alternative rate controlling agent especially where a \textit{\beta-blocker} is contra-indicated or not tolerated. Not to be initiated in angina if heart rate is below 70 bpm. It can be used safely in patients with impaired LV function. Latest advice is that it should NOT be co-prescribed with diltiazem or verapamil.

\textit{Ranolazine} is licensed as adjunctive therapy in patients who are inadequately controlled or intolerant of first-line anti-anginal drugs. The dose is initially 375 mg BD increasing to a maximum of 750 mg BD. Its use should be mainly in patients with chronic stable angina rather than in the acute setting. Initiation of the drug should be by consultants only. It is contraindicated if the GFR is < 30. Please refer also to page 87).

All patients should be commenced on a \textit{statin} (see page 70). The addition of an \textit{ACEI} should also be considered in light of the findings of the HOPE study.

Some patients with angina remain symptomatic despite maximal medication. If revascularisation is not possible consideration should be given to stellate ganglion block or surgical sympathectomy.

Other risk factors need to be controlled such as diabetes and hypertension. Lifestyle advice is mandatory.
Variant/Vasospastic Angina

Variant angina can present as an apparent STEMI as symptoms are often accompanied by transient ST elevation. Episodes often occur between midnight and early morning. Coronary angiography may show spasm in the absence of obstructive coronary disease. Smoking is a risk as is substance abuse (cocaine, marijuana, amphetamines). It is more common in people under the age of 50.

Labelling patients with coronary spasm should be strongly avoided unless there is convincing evidence (labile ECG changes, spasm seen during angiography).

Treatment of variant angina reduces the frequency of symptomatic episodes and appears to decrease the frequency of serious complications. Although episodes may terminate spontaneously, sublingual GTN is effective in reducing the duration of each episode. As smoking cessation removes one of the triggers for variant angina and leads to a significant decrease in the frequency of episodes, at least in the short term, smoking cessation should be encouraged.

Calcium channel blockers (nifedipine, diltiazem, and verapamil) and nitrates are effective as chronic therapies for variant angina. Both prevent vasoconstriction and promote vasodilation in the coronary vasculature.

The use of a calcium channel blocker therapy may be an independent predictor of myocardial infarct-free survival in variant angina patients. Recommended is diltiazem at a dose of 240 to 360 mg per day. For patients who do not have acceptable improvement in symptoms on calcium channel blocker therapy, add a long-acting nitrate (eg, isosorbide mononitrate 30 or 60 mg once daily).

Angina with normal coronary arteries

This condition manifests as typical angina pain but with angiographically normal coronary arteries and without evidence of coronary spasm. It is sometimes known as cardiac syndrome X or microvascular angina. Ischaemia tests may be abnormal including exercise testing, perfusion imaging and stress echo and MRI. Patients tend to be younger and there is a dominance of females.

The use of GTN can be helpful but not always. β-blockers should be the first choice followed by calcium channel blockers (eg, amlodipine) and long-acting nitrates (if GTN responsive). Many patients respond to the addition of an ACEi, particularly in combination with calcium channel blockers.

Other medications which have been used with varying success include low dose imipramine (50 mg ON) and ranolazine.

HRT may play a role in post-menopausal women.
NON-CARDIAC CHEST PAIN SYNDROMES

A number of patients are referred to clinic where it is clear after the history and examination that there is unlikely to be a cardiac cause of chest pain. A number will have had investigations to rule out a cardiac cause but have on-going symptoms.

Musculo-skeletal

There are a number of chest wall syndromes with chest pain associated with musculo-skeletal inflammation.

"Costochondritis" is one of the more common presentations of musculo-skeletal chest pain. It is a diffuse pain syndrome, in which multiple areas of tenderness are found that reproduce the described pain. The upper costal cartilages at the costochondral or costosternal junctions are most frequently involved, particularly on the left. The areas of tenderness are not accompanied by heat, erythema, or localized swelling. The pain is reproduced by palpation. Treatment is with simple analgesia and NSAIDs. Occasionally local injections are needed. Most cases follow a self-limiting course with occasional exacerbations.

“Tietze syndrome” is a similar condition but more localised, usually involving costosternal, sternoclavicular, or costochondral joints of the second and third ribs. Tietze syndrome typically is characterised by localized swelling. Septic arthritis should be considered in the differential diagnosis.

Fibromyalgia is a common chronic musculoskeletal pain syndrome, characterised by diffuse musculoskeletal pain, fatigue, sleep disturbance, and multiple periarticular tender points found on physical examination.

Chest wall pain occurring after CABG may be a result of incisional discomfort, of internal mammary artery grafting, or related to sternal wires.

Costovertebral joint dysfunction syndrome is an uncommon condition that causes posterior chest wall pain and may mimic a pulmonary embolism. Thoracic disk herniation is another unusual cause of posterior chest pain; the pain is sometimes dermatomal and "band-like," and retrosternal or retrogastric pain has also been described. Other isolated chest wall pain syndromes include sternalis syndrome, xiphoidalgia, and spontaneous sternoclavicular subluxation.

A number of rheumatic diseases can be associated with chest pain. Systemic causes should also be considered: stress or pathological fractures, neoplasia, sickle cell anaemia, myeloma, vitamin D deficiency, herpes zoster.

Gastro-oesophageal causes

The heart and oesophagus share some common neurologic innervation. Thus, it may be difficult to distinguish between chest pain due to myocardial ischaemia and pain originating from the oesophagus based upon the history alone. Oesophageal disease may cause symptoms thought "classical" for myocardial ischaemia, including a sensation of chest pressure, provocation with exercise or emotion, palliation by rest or nitrates, or a crescendo pattern.

Myocardial ischaemia should be ruled out before any patient at risk for CAD, presenting with anginal-quality chest pain, is given a gastrointestinal diagnosis. Neither the clinical history nor the response of new chest pain to a PPI reliably differentiates the diagnoses, which often co-exist. There are, however, several clues that suggest an oesophageal aetiology: pain provoked by swallowing, pain provoked...
by postural changes, pain helped by antacids, an inconsistent relationship to exercise, substernal chest pain that does not radiate, frequent episodes of spontaneous pain, nocturnal pain, severe onset of pain - continuing as a background ache for several hours, pain associated with heartburn and regurgitation of acid into the mouth.

GI causes of chest pain are primarily due to oesophageal disorders, and the most common GI cause of chest pain is gastro-oesophageal reflux disease (GORD). Peptic ulcer disease can cause pain referred to the chest. A motility disorder or oesophageal spasm should be entertained if chest pain is associated with dysphagia.

Pulmonary causes of chest pain

Pulmonary causes of chest pain may be related to the pulmonary vessels, lung parenchyma, airways, or pleural tissue. Pulmonary embolus and tension pneumothorax are two pulmonary causes of chest pain that may be imminently life threatening. The diagnosis of acute pulmonary embolism (PE) often requires a high index of suspicion. It should be considered in any patient who presents with chest pain that is usually but not necessarily pleuritic in nature or dyspnoea that is not fully explained by the clinical evaluation, chest radiograph, or electrocardiogram. It is more commonly seen in the acute setting.

Patients with secondary pulmonary hypertension often have symptoms that reflect the underlying aetiology (eg, COPD, pulmonary embolic disease, collagen vascular disease). Idiopathic pulmonary arterial hypertension is a rare disease. Most patients present with exertional dyspnoea, which is indicative of an inability to increase cardiac output with exercise. Exertional chest pain, syncope, and oedema are indications of more severe pulmonary hypertension and impaired right heart function.

Causes of chest pain related to the lung parenchyma include infection, cancer, or chronic diseases such as sarcoidosis, as well as diseases involving the bronchial airways such as asthma, emphysema, and COPD.

Psychogenic/psychosomatic causes of chest pain

Chest pain may be a presenting symptom of panic disorder, depression, and hypochondriasis, as well as cardiac, cancer or other phobias. Reviews of the literature have estimated that approximately one-third of patients presenting to the ED for chest pain have a psychiatric disorder, while approximately half of patients with non-cardiac chest pain have various psychiatric diagnoses. Formal therapy may be indicated (psychiatric, psychological, CBT etc).

Hyperventilation, which is associated with panic attacks, can also result in non-anginal chest pain and occasionally ECG changes - particularly nonspecific ST and T wave abnormalities in the inferior leads most commonly. More subtle hyperventilation disorders include dysfunctional breathing which can present as chest pain. A Nijmegen questionnaire can help identify these patients who can be helped with respiratory physiotherapy:

A sensation of air hunger is common in this cohort of patients and a simple test is to get the patient to hold their breath for as long as possible. Normal is > 30 seconds. Abnormal is < 20 seconds and may reproduce the pain. If this fails, getting the patient to breathe more deeply than usual for 60 seconds can reproduce the symptoms.
MYOCARDITIS

Myocarditis is most frequently caused by viruses (adenoviruses, parvovirus B19, human herpesvirus 6 and Coxsackie virus) and there may be a clear preceding viral prodrome. Other causes include bacterial infections and non-infectious causes (immune-mediated or toxic). Recently there has been an association with Covid vaccinations (specifically Pfizer and Moderna) and myocarditis, particularly in younger males.

The clinical manifestations of myocarditis are highly variable ranging from subclinical disease to fatigue, chest pain, heart failure, cardiogenic shock, arrhythmias, and sudden death. Age at presentation is typically 20-50 years.

Chest pain may reflect associated pericarditis. Myocarditis can mimic myocardial ischaemia and/or infarction both symptomatically and on the electrocardiogram, particularly in younger patients. The hs-TnI may or may not be elevated. It should be suspected in younger patients presenting with apparent STEMI but who have normal coronary arteries. LV function is usually impaired. Dysfunction is usually global but may be regional. CMR can assist in the diagnosis. Endomyocardial biopsy is sometimes diagnostic but rarely undertaken.

Prognosis is variable but over a third may recover LV function.

Certain infectious causes have specific therapies (mycoplasma, Lyme disease). Generally speaking however, treatment is supportive. Antiviral and immunosuppressive therapy is not usually helpful.

Standard heart failure treatment is appropriate (ACEI, ARBs, diuretics, β-blockers). Activity should be restricted during the acute phase. A small minority may require referral for mechanical circulatory support (VAD).

Patients require follow up for review of LV function.
PERICARDITIS

Pericarditis is classified as dry, effusive, effusive-constrictive, and constrictive. The aetiological classification comprises: infectious pericarditis, pericarditis in systemic autoimmune diseases, type 2 (auto) immune processes, post myocardial infarction syndrome, and auto-reactive (chronic) pericarditis. It can also be seen after extensive ablation procedures.

In acute pericarditis a history of fever, malaise, and myalgia is common. Major symptoms are retrosternal or left precordial chest pain (radiates to the trapezius ridge, can be pleuritic or sound ischaemic, varies with posture – worse lying flat) and shortness of breath. Pleural effusion may be present. Heart rate is usually rapid and regular.

Viral pericarditis is the commonest cause of acute pericarditis and can occur with a variety of common viruses (entero-, echo-, adeno-, cytomegal-, Ebstein Barr-, herpes simplex-, influenza, parvo B19, hepatitis C, HIV, etc). A recent association with Covid vaccinations has been identified (Pfizer and Moderna). Treatment is usually symptomatic but in more severe cases with recurrent episodes, specific anti-viral therapy may be indicated when a specific virus is implicated. Symptomatic therapy comprises the use of NSAIDs and simple analgesia. Colchicine (0·5 mg BD) can be used and helps reduce recurrence. Treatment is usually for 3 months. Without colchicine, recurrence can be anywhere between 15 and 30%. Systemic corticosteroid therapy should be restricted to connective tissue diseases, auto-reactive or uraemic pericarditis. Rarely they can be used if NSAIDs and colchicine have failed. Bacterial pericarditis is extremely rare.

An echocardiogram is warranted to exclude effusions and look for myocardial dysfunction. Hs-TnI (around 50% cases) or CK-MB may be elevated along with a raised CRP. The ECG is abnormal in about 60% with diffuse concave ST elevation and PR depression. The ST and PR segments typically move in opposite directions. It may be difficult to distinguish from ischaemia. Tamponade is rare.

Chronic pericarditis can be due to systemic illness, neoplasia, autoimmune disorder, TB or myxoedema. Chronic recurrent effusions may need treatment with balloon pericardiomyotomy or surgical pericardiectomy.

Pericarditis in renal failure is common especially in those just pre-dialysis or those who have just started dialysis. It is more common when patients are fluid overloaded. Typical pericarditis ECG changes are unusual.

Autoreactive pericarditis may be seen in SLE, rheumatoid arthritis, ankylosing spondylitis, systemic sclerosis, dermatomyositis, polyarteritis nodosa and Reiter’s syndrome. Pericarditis can occur in the first 2-3 weeks after surgery (postcardiotomy syndrome) and post STEMI. Effusions can be due to neoplastic disease (most commonly secondary tumours). Carcinoma lung and breast account for more than half, leukaemia and lymphoma about a quarter.

Constrictive pericarditis can occur after virtually any pericardial disease process, but most often follows acute pericarditis (viral or idiopathic) or cardiac surgery. Symptoms include dyspnoea, ascites, cachexia and oedema. Diagnosis can be challenging. A CXR may show pericardial calcification. A TTE may show a thickened pericardium. Other signs may include dilatation of the IVC and hepatic veins with absent or diminished inspiratory collapse. There may be moderate bialtrial enlargement. A CT scan can provide valuable additional information as can CMR.
In patients in whom surgical pericardiectomy is being considered, it is common to undertake coronary angiography - this provides an opportunity to perform a right heart catheter. The major haemodynamic findings in patients with constrictive pericarditis include:

- Increased right atrial pressure
- Prominent x and y descents of venous and atrial pressure tracings (see image below)
- Kussmaul's sign (the lack of an inspiratory decline or an inspiratory increase in CVP)
- Increased RV EDP, usually to a level one-third or more of RV systolic pressure.
- "Square root" signs in the RV and LV diastolic pressure tracings (an early diastolic dip followed by a plateau of diastasis; the last stage of diastole just before contraction), often with an absent a wave
- A greater inspiratory fall in pulmonary capillary wedge pressure compared to left ventricular diastolic pressure
- Equalization of LV and RV diastolic plateau pressure tracings, with little separation with exercise, since filling, and therefore diastolic pressure, in both ventricles is constrained by the inelastic pericardium. In some patients, this finding is seen only during inspiration (see image below)

The normal JVP waveform is represented in blue. In comparison, the JVP waveform in a patient with constrictive pericarditis (CP) is shown in red.

Simultaneous RV and LV pressure tracings showing diastolic equalisation of pressures in both ventricles in a patient with constrictive pericarditis.
PERICARDIAL EFFUSIONS & TAMPONADE

Pericardiocentesis is life-saving in cardiac tamponade and indicated in effusions > 20mm.

The echocardiographic features of cardiac tamponade include the following:

- Collapse of the right atrium at end-diastole and the right ventricle in early diastole.
- Reciprocal changes in left and right ventricular volumes with respiration, which are important in the pathogenesis of pulsus paradoxicus.
- Increased respiratory variation of mitral and tricuspid valve inflow velocities (drop in mitral flow by 30%, and tricuspid valve flow by 60% on the first beat of inspiration and expiration, respectively).
- Dilation (plethora) of the inferior vena cava and less than a 50 reduction in its diameter during inspiration, reflecting systemic congestion.

Relative contraindications to pericardiocentesis include uncorrected coagulopathy, anticoagulant therapy, thrombocytopenia < 50000/mm3, small, posterior and loculated effusions. If the procedure needs to be delayed, volume depletion (including use of diuretics) should be avoided. Where uncertainty exists as to whether to drain, the SpR should discuss with a consultant, an imaging expert ideally.

It is prudent to drain the fluid in 500 mL steps to avoid acute right heart dilatation particularly with large effusions. The sub-xiphoid approach has been used most commonly, directed towards the left shoulder at a 30° angle to the skin. If haemorrhagic fluid is freely aspirated a few millilitres of contrast medium may be injected under fluoroscopic observation (sluggish layering inferiorly indicates that the needle is correctly positioned). A soft J-tip guidewire is introduced and after dilatation exchanged for a multi-holed pigtail catheter. If the sub-xiphoid approach is not possible, echocardiography should identify the shortest route where the pericardium can be entered intercostally (usually in the sixth or seventh rib space in the anterior axillary line). The most serious complications of pericardiocentesis are laceration and perforation of the myocardium and the coronary vessels. In addition, patients can experience air embolism, pneumothorax, arrhythmias (usually vasovagal bradycardia), and puncture of the peritoneal cavity or abdominal viscera.

The drain should be left in for 24-48 hours or until drainage is < 25ml/day. A balloon pericardietomy or surgical pericardietomy should be considered for recurrent effusions.

Pericardial fluid should be sent for analysis. This should include culture and cytology. If malignant disease is suspected, tumour markers should also be requested (carcinoembryonic antigen (CEA), alpha-feto protein (AFP), carbohydrate antigens CA 125, CA 72-4, CA 15-3, CA 19-9, CD-30, CD-25, etc).
PULMONARY EMBOLISM

Pulmonary thromboembolism (PTE) is occasionally encountered on the CCU either as a primary diagnosis, or alternatively as a complication of myocardial infarction. There are many potential risk factors, some permanent, others temporary.

Strong risk factors (odds ratio >10): fracture of lower limb, hospitalisation for heart failure, atrial fibrillation of flutter (within previous 3 months), hip or knee replacement, major trauma, myocardial infarction (within previous 3 months), previous venous thromboembolism, spinal cord injury.

Moderate risk factors (odds ratio 2–9): arthroscopic knee surgery, auto–immune diseases, blood transfusion, central venous lines, chemotherapy, congestive heart or respiratory failure, erythropoiesis-stimulating agents, hormone replacement therapy (depends on formulation), in vitro fertilization, cancer (highest risk in metastatic disease), oral contraceptive therapy, paralytic stroke, postpartum period, thrombophilia.

Weak risk factors (odds ratio <2): bed rest >3 days, diabetes mellitus, hypertension, immobility due to sitting (e.g. prolonged car or air travel), increasing age, laparoscopic surgery (e.g. cholecystectomy), obesity, pregnancy, varicose veins.

For initial diagnosis, in those with low or intermediate probability of PTE, a negative D-dimer (< 0.5 µg/ml FEU) means that imaging is unnecessary. There is a different reference range in pregnancy. Investigations should also include INR, FBC, U&E, LFT, CXR and ECG. In patients with suspected right heart strain a NT-proBNP should be done. An elevated NT-proBNP indicates the patient must be kept as an inpatient for initiation of treatment.

With D-dimers, remember false positives are common. In those with a co-existing DVT a leg ultrasound is enough to confirm. A Wells score (see page 102) is useful in determining the likelihood of a PTE. In those with high probability of PTE but no clinical DVT a CTPA is warranted. Isotope scanning is appropriate in patients with significant renal impairment. For massive PTE an echo may be diagnostic.

If the diagnosis is suspected, treatment should be commenced without delay. Patients should be should be given a therapeutic dose of LMWH (dalteparin is the LMWH of choice in UHL in this setting) or DOAC.

Dalteparin dosing charts are available on Insite. The dose is weight adjusted and needs further adjustments if there is significant renal impairment:

For confirmed PTE, LMWH should be continued until warfarin levels are therapeutic (INR > 2.0 for 2 consecutive days). An alternative strategy is to immediately initiate a DOAC using either rivaroxaban or apixaban. Initial LMWH is required if using dabigatran or edoxaban.

For the initial treatment of acute pulmonary embolism, the recommended dosage of rivaroxaban is 15 mg BD for the first 21 days followed by 20 mg OD for continued treatment and prevention of recurrent venous thromboembolism. For prevention of
recurrent DVT and/or PE following completion of 6 months anticoagulation, the dose is 10 mg OD.

If apixaban is employed the recommendation is 10 mg BD for the first 7 days followed by 5 mg BD for at least 3 months (generally 6 months). For prevention of recurrent DVT and/or PE following completion of 6 months anticoagulation, the dose is 2.5 mg BD.

For more details on the DOACs see page 117.

Although not preferred agents, dabigatran and edoxaban are licensed. The recommended dosage of dabigatran is 150 mg twice daily following treatment with a LMWH for at least 5 days. For people aged 80 years or older and for people on verapamil, the recommended dose is 110 mg twice daily. In people aged 75 - 80 years, people with moderately reduced kidney function, people with gastritis, esophagitis or gastro-oesophageal reflux, and people at increased risk of bleeding, either dose (150 mg BD or 110 mg BD) can be given based on an individual assessment. Dabigatran is contraindicated in people with severely reduced kidney function. The recommended dosage of edoxaban is 60 mg OD following treatment with a LMWH for at least 5 days.

In patients with massive PTE (hypotension related to the PTE, severe hypoxaemia or acute RV failure), thrombolysis should be seriously considered. Thrombolytic regimes for PTE are not yet universally agreed, but the following is considered acceptable: t-PA (Alteplase): Over 65 kg – 10 mg IV bolus followed by 90 mg IV infusion over 2 hours, Under 65 kg – 10 mg IV bolus then max infusion dose should not exceed 1.5 mg/kg. If cardiac arrest seems imminent a 50 mg bolus can be given. The usual contraindications to thrombolysis apply. After lysis, UFH (18 IU/kg/hr) is employed once the APTT is less than twice the upper limit of normal. Careful fluid resuscitation may be necessary, but volumes should be limited. Inotropic support may also be necessary.

Very occasionally patients may require surgical embolectomy, although the mortality of the procedure can be very high. Appropriate to consider if within 2 hours of onset and if there is evidence of thrombus in the heart or proximal pulmonary arteries. Mechanical fragmentation is a last ditch procedure.

Anticoagulation for the first episode of provoked PE should be a minimum of 3 months. The standard duration of oral anticoagulation for the first episode of unprovoked PTE is: 6 months. For those with prior PTE, anticoagulation should be for life. Reducing the dose of DOAC after 6 months should be considered (rivaroxaban to 10 mg OD, apixaban to 2.5 mg BD).

For patients under the age of 40 and those with a family history, thrombophilia testing is indicated. Testing is recommended in any patient with recurrent thrombosis where there is no clear potential cause. Testing cannot be performed within 6 weeks of a thrombotic event. Warfarin reduces the levels of Protein C and S and screening is therefore done once warfarin has been discontinued for at least 6 weeks. Patients aged over 40 years with a first unprovoked DVT or PE who do not have signs or symptoms of cancer based on initial investigations consider a CT abdomen and pelvis - this investigation is not required as an inpatient and can be performed on an urgent out-patient basis. In older men, or men with urinary problems, a PSA test should be considered. PV bleeding warrants a gynaecology screen. In women consider mammography.
The use of the simplified pulmonary embolism severity index score helps identify low risk patients suitable for ambulatory management: **s-PESI score**:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Score</th>
<th>Risk Class</th>
<th>Total points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 80</td>
<td>1</td>
<td>LOW</td>
<td>0</td>
</tr>
<tr>
<td>Cancer</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic cardiopulmonary disease</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse ≥110 bpm</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP < 100 mmHg</td>
<td>1</td>
<td>HIGH</td>
<td>≥ 1</td>
</tr>
<tr>
<td>Arterial blood oxygen saturation</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slow initiation of **warfarin** is recommended for those being treated under the ambulatory care pathway employing the Tait and Sefcick regime (see page 237). More commonly **rivaroxaban** or **apixaban** are used. For patients in whom there is a low bleeding risk and in whom inpatient management has been decided upon, **anticoagulation** with **warfarin** should be initiated employing the Fennerty algorithm for venous thrombosis (see page 237) or again **rivaroxaban** or **apixaban** are used.

In patients with cancer, long-term **LMWH** is often preferred rather than oral **anticoagulation**.

Deep Vein Thrombosis (DVT)

All patients must be assessed for their risk of DVT on admission and appropriate patients administered prophylactic **enoxaparin** (4000 IU OD). In patients in whom DVT is suspected clinically, a Wells pre-test probability score should be calculated.

Online calculators are available: http://www.mdcalc.com/wells-criteria-for-dvt/

Table 4: Two-level PE Wells score (Wells et al 2000)

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical signs and symptoms of DVT (minimum of leg swelling and pain with palpation of the deep veins)</td>
<td>3</td>
</tr>
<tr>
<td>An alternative diagnosis is less likely than PE</td>
<td>3</td>
</tr>
<tr>
<td>Heart rate greater than 100 beats per minute</td>
<td>1.5</td>
</tr>
<tr>
<td>Immobilisation (for more than 3 days) or surgery in the previous four weeks</td>
<td>1.5</td>
</tr>
<tr>
<td>Previous DVT/PE</td>
<td>1.5</td>
</tr>
<tr>
<td>Haemoptysis</td>
<td>1</td>
</tr>
<tr>
<td>Malignancy (on treatment, treated in the last 6 months, or palliative)</td>
<td>1</td>
</tr>
</tbody>
</table>

Clinical probability revised score:

PE ‘likely’ = ≥ 5 points
PE ‘unlikely’ = ≤ 4 points
Table 5: Two-level DVT Wells score (Wells et al 2003)

<table>
<thead>
<tr>
<th>Clinical Feature</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active cancer (treatment on going, within 6 months, or palliative)</td>
<td>1</td>
</tr>
<tr>
<td>Paralysis, paresis or recent plaster immobilisation of the lower extremities</td>
<td>1</td>
</tr>
<tr>
<td>Recently bedridden for 3 days or more or major surgery within 12 weeks requiring general or regional anaesthesia</td>
<td>1</td>
</tr>
<tr>
<td>Localised tenderness along the distribution of the deep venous system</td>
<td>1</td>
</tr>
<tr>
<td>Entire leg swollen</td>
<td>1</td>
</tr>
<tr>
<td>Calf swelling at least 3 cm larger than asymptomatic side</td>
<td>1</td>
</tr>
<tr>
<td>Pitting oedema confined to the symptomatic leg</td>
<td>1</td>
</tr>
<tr>
<td>Collateral superficial veins (non-varicose)</td>
<td>1</td>
</tr>
<tr>
<td>Previously documented DVT</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis at least as likely as DVT</td>
<td>-2</td>
</tr>
</tbody>
</table>

Clinical probability revised score:
DVT ‘likely’ = ≥ 2 points
DVT ‘unlikely’ = ≤ 1 point

Confirmed DVT requires treatment with rivaroxaban. When rivaroxaban is contraindicated or the patient declines, warfarin should be employed after initiation of LMWH. Other DOACs may be recommended locally in due course. Duration of therapy is variable depending on the circumstances. Post-surgery the guidelines recommend 6 weeks. In other settings, in patients with new DVT without a provoking cause or risk factor, treatment should be for 3 - 6 months. In a more contemporary study from 2007, there does not appear to be an advantage in treating for 6 months rather than 3.
ARRHYTHMIAS

The electrophysiologists offer a consult service for all patients with arrhythmias which are difficult to control or manage. There is a rota (see Medirota) and referrals can be made either directly with the consultant if immediate assistance is required or via the mailbox: EPconsult@uhl-tr.nhs.uk.

BRADYCARDIA

Heart rates of less than 60 bpm are considered to be bradycardia. However, it is more helpful to classify a bradycardia as absolute (< 40 bpm) or relative when the heart rate is inappropriately slow for the haemodynamic state of the patient. The following signs may indicate instability: Systolic BP < 90 mmHg, HR < 40 bpm, poor perfusion, poor urine output, ventricular arrhythmias requiring suppression or heart failure.

Bradycardias can be classified according to the pacemaker which is at fault: either the sinus node or AV node.

Sinus Node:

Sinus node dysfunction can be sinus bradycardia, sick sinus syndrome (tachy-brady), sinus arrest alone or as part of vasovagal syncope. Obviously not all patients will be symptomatic. In the context of STEMI, moderate sinus bradycardia is common and benign, particularly in the first hour following (especially inferior) myocardial infarction. It is occasionally due to opiates. If the heart rate is persistently less than 45, or there are associated symptoms, treatment with atropine starting with a dosage of 600 μg repeated every 3 to 5 minutes to a total of 3·0 mg may be required to increase heart rate and prevent symptoms.

At other times, sinus bradycardia may be due to medications. Pacing is rarely required in the acute setting. Hypothyroidism, hypothermia and sleep apnoea should be considered. Less commonly sinus bradycardia can be the result of rheumatic fever, viral myocarditis, amyloidosis, haemochromatosis and pericarditis.

In patients with symptomatic sinus node disease a pacemaker is indicated.

AV Node:

Classified according to the degree of nodal dysfunction:

First degree AV block

Characterised by a PR interval > 0·2 seconds, no specific treatment is indicated. For patients on digoxin, check for toxicity. Care with other rate limiting drugs. If there are symptoms of dizziness or syncope cardiac monitoring should be considered to identify higher degrees of block.

Second degree AV block (Wenckebach, Mobitz Type I)

This is characterised by progressive lengthening of the PR interval, followed by failure of the atrial impulse to conduct to the ventricles. It can occur in young fit patients with high vagal tone so can be seen during the night if monitored. It can occur quite frequently following inferior MI and rarely proceeds to complete heart block. No specific therapy is indicated. Higher degrees of AV block should be looked for if patients present with syncope or dizziness.
Second degree AV block (Mobitz Type II)

Characterised by a constant PR interval followed by sudden failure of a P wave to be conducted to the ventricles, this is less common, but indicates more serious involvement of the conduction system. Many patients will have associated bifascicular or trifascicular block. It can be associated with infarction where infrequently it progresses suddenly to complete heart block. Temporary transvenous pacing should be considered for recurrent symptoms or instability (see above). Recovery of conduction can occur following an MI and, if confirmed with cardiac monitoring, pacing can be avoided. In the absence of a recent acute coronary event, permanent pacing should be arranged (if drugs have been excluded). Various neuromuscular disorders can be associated with Mobitz type II block.

Complete (Third Degree) AV block

This is characterised by no conduction from the atria to the ventricles and therefore AV dissociation. There is no relationship between the P waves and QRS complexes. This block can occur above the AV node at the His region (narrow complex escape and usually well tolerated such as congenital complete heart block) or beneath the AV node with broad complex escape (not well tolerated). In can also be intermittent therefore look for ECGs with trifascicular or bifascicular block (RBBB, left axis deviation with or without prolonged PR interval) and alternating LBBB and RBBB.

Causes include various anti-arrhythmic drugs but more notably digoxin toxicity. It can occur following inferior STEMI (< 10% of cases) and in this context can resolve in hours to days. It is a more ominous finding following anterior MI (infranodal). However, with the advent of PPCI, complete AV block is rarely seen following recent coronary events. Another important cause is severe hyperkalaemia (can be treated with IV calcium chloride - 10 ml of 10% solution over 3 - 5 minutes, see page 164). In the haemodynamically unstable patient, atropine can be administered (600 µg to a maximum of 3 mg). Isoprenaline administered at a rate of 5 µg/min can be tried. In a peri-arrest situation, use an external pacemaker with sedation before arranging for temporary cardiac pacing. Urgent permanent pacing is indicated, and should be considered within 24 hours, in all patients except those with a reasonable likelihood of recovery of conduction - such as in patients with a recent coronary event.

Temporary Pacing

External (Transcutaneous) Pacing

In an emergency, external pacing can be instituted using percussion pacing or electrical pacing using a defibrillator. External pacing is unpleasant for the patient and should be considered a temporising measure until emergency transvenous temporary pacing / permanent pacing can be achieved. Consider isoprenaline / atropine to minimise the need for external pacing and sedation with midazolam.

Percussion pacing protocol:

1. Percussion pacing is performed similarly to a precordial thump but with repeated applications and less force. The force required varies by patient but, as a guide, let the ulnar side of the fist fall from a height of 20-30 cm on to the lower left sternal edge.
2. Aim for a rate of 50-70 / min.
3. The efficacy of percussion pacing is best confirmed by restoration of circulation
and electrical capture on monitoring immediately after the percussion. The defibrillator should immediately be attached and set up as below but percussion pacing can be continued, providing it is effective, to minimise the requirement for electrical external pacing.

4. If there is any doubt as to the efficacy of percussion pacing CPR should be performed.

Electrical external pacing protocol:

1. Not all of UHL’s defibrillators are capable of external pacing, check for a “pacer” button on the front. The defibrillators on CCU are able to externally pace.

2. Apply the defibrillator pads ideally in an AP position to minimise thoracic impedance but the standard anterolateral position is also acceptable.

3. Apply the defibrillator monitoring electrodes; the defibrillator cannot pace and sense through the pads simultaneously and a common error is to omit this step.

4. Switch the pacer on, it will default to a heart rate of 60 but with 0 mA energy delivery. Increase the energy as needed until electrical capture is achieved, then add a 10% safety margin for consistent capture. A typical threshold range is 40 to 80 mA but will vary with patient habitus e.g. obesity, COPD.

5. Confirm successful pacing with electrical capture of the heart (consistent appearance of QRS complexes immediately post pacing spikes).

6. CPR can be continued during electrical external pacing and should be continued if there is any doubt as to the efficacy of electrical external pacing.

Temporary Transvenous Pacing:

This procedure should be performed following a period of training including certification in the use of the fluoroscopy/X-ray equipment. Consider an externalised permanent pacemaker and discuss with the non-interventionist on call before inserting a temporary transvenous pacemaker.

1. Venous access with a 5F sheath should be either via the internal jugular (reduced risk of infection) or femoral vein (more straightforward) in patients for whom anticoagulant therapy is imminent or recently received because of the risk of haemorrhage.

2. Take a 5F temporary pacing wire with a preformed angle at the tip, if necessary the wire can be curled more to aid placement. Screen up or down following the wire all the way into the heart. Temporary pacing wires are soft and easily bend making further manipulation difficult, avoid this by pushing in repeated small movements holding the wire close to the sheath.

3. A useful technique is to try and place the tip of the electrode within the atrium (particularly the lateral wall), advance the electrode gently until a ‘J’ is formed, and then apply clockwise rotation. This should allow the electrode to fall across the tricuspid valve and into the right ventricle. Gentle manipulation with backwards and forwards motions with or without rotation should allow positioning of the electrode tip in the apex. Position of the tip should be slightly downward pointing and as lateral as possible.

4. Threshold for pacing should ideally be < 1 Volt. If patients are compliant, stability should be checked by getting the patient to breathe deeply or cough. This stability
should be checked whilst screening.

5. Ensure the electrode is properly secured after placement both by suture placement and adequate dressings to cover both the sheath and the majority of the wire. This is best achieved by making a loop so that if the wire is pulled it pulls on the loop rather than the tip of the wire.

6. Look for LBBB pattern during temporary pacing. Although rarely, RBBB pattern can be seen even with correct positioning in the RV apex, identification of a LBBB pattern with RV pacing should prompt a conscious check to ensure that the RV pacing lead is not inadvertently in the pericardial space, coronary sinus or via a PFO or ASD into the left ventricle.

Permanent Pacing

There are a variety of different indications for pacing. The following is based on ACC/AHA/ESC guidelines. It is sensible to check patient’s hobbies and occupations before any device therapy as pacemaker function can be affected by external influences (electromagnetic fields, arc welding equipment, industrial magnets).

Inpatient pacemaker and other device requests can be made under ‘Service Referrals’ on ICE and selecting ‘Cath Lab’ followed by ‘Devices’.

Recommendations for permanent pacing in sinus node dysfunction (SND):

- SND with documented symptomatic bradycardia, including frequent sinus pauses that produce symptoms.
- Symptomatic chronotropic incompetence and in patients with symptomatic sinus bradycardia that results from required drug therapy for medical conditions.
- Not indicated for SND in asymptomatic patients.
- Assess for chronotropic incompetence with a 24 hour ECG looking for heart rate variability during periods of exercise or with an exercise tolerance test.

Recommendations for permanent pacing in acquired atrioventricular block in adults:

- Third-degree and advanced second-degree AV block associated with symptomatic bradycardia.
- Third-degree and advanced second-degree AV block associated with arrhythmias and other medical conditions that require drug therapy that results in symptomatic bradycardia.
- Third-degree and advanced second-degree AV block in awake, symptom-free patients in sinus rhythm, with documented periods of asystole greater than or equal to 3 seconds or any escape rate less than 40 bpm, or with an escape rhythm that is below the AV node (wide QRS).
- Third-degree and advanced second-degree AV block in awake, symptom-free patients with AF and bradycardia with 1 or more pauses of at least 5 seconds or longer.
- Third-degree and advanced second-degree AV block after catheter ablation of the AV junction.
- Third-degree and advanced second-degree AV block with postoperative AV block that is not expected to resolve after cardiac surgery.
• Third-degree and advanced second-degree AV block associated with neuromuscular diseases with AV block, such as myotonic muscular dystrophy, Kearns-Sayre syndrome, Erb dystrophy (limb-girdle muscular dystrophy), and peroneal muscular atrophy, with or without symptoms.

• Second-degree AV block with associated symptomatic bradycardia regardless of type or site of block.

• Asymptomatic persistent third-degree AV block with average awake ventricular rates of 40 bpm or faster if cardiomegaly or LV dysfunction is present or if the site of block is below the AV node.

• Second- or third-degree AV block during exercise in the absence of myocardial ischemia.

• Persistent third-degree AV block with an escape rate greater than 40 bpm in asymptomatic adult patients without cardiomegaly.

• Reasonable for asymptomatic type II second-degree AV block with a narrow QRS. When type II second-degree AV block occurs with a wide QRS, including isolated right bundle-branch block, pacing becomes a Class I recommendation.

Recommendations for permanent pacing in chronic bifascicular block:

• Advanced second-degree AV block or intermittent third-degree AV block.

• Type II second-degree AV block.

• Alternating bundle-branch block.

• Reasonable for syncope not demonstrated to be due to AV block when other likely causes have been excluded, specifically ventricular tachycardia (VT).

• Not indicated for fascicular block without AV block or symptoms.

Recommendations for permanent pacing after the acute phase of myocardial infarction:

• Indicated for persistent second-degree AV block in the His-Purkinje system with alternating bundle-branch block or third-degree AV block within or below the His-Purkinje system after ST-segment elevation MI.

• Transient advanced second- or third-degree infranodal AV block and associated bundle-branch block. If the site of block is uncertain, an electrophysiological study may be necessary.

• Persistent and symptomatic second- or third-degree AV block.

Recommendations for permanent pacing in hypersensitive carotid sinus syndrome and neurocardiogenic syncope:

• Recurrent syncope caused by spontaneously occurring carotid sinus stimulation and carotid sinus pressure that induces ventricular asystole of more than 3 seconds.

• Reasonable for syncope without clear, provocative events and with a hypersensitive cardioinhibitory response of 3 seconds or longer.
- May be considered for significantly symptomatic neurocardiogenic syncope associated with bradycardia documented spontaneously or at the time of tilt-table testing.

Device specialists will decide on the optimal pacing mode but the following figure indicates general recommendations:

Pacemaker Syndrome

More than a quarter of patients who are paced VVI develop 'pacemaker syndrome' which manifests as dyspnoea, dizziness, palpitations, pulsations and chest pain. In patients with LV dysfunction, ventricular pacing can result in a deterioration in heart failure symptoms.

Overall dual chamber pacing is associated with better symptomatic outcomes. VVIR pacing should largely be restricted to patients with permanent atrial fibrillation.

Left bundle branch block

LBBB most commonly occurs in patients with underlying heart disease but can also be seen in asymptomatic patients with a structurally normal heart. It increases in incidence with age. Patients should be assessed for hypertension, coronary disease, and other disorders that have been associated with LBBB (myocarditis, valvular heart disease, cardiomyopathies).

An echocardiogram is of value. One should also consider the possibility of underlying ischaemia. MPS scans result in higher false positive cases. Stress echocardiography has better accuracy and specificity.
Right bundle branch block

RBBB can occur in a normal heart in up to about 2% of patients. Incomplete RBBB occurs in up to 13% but reduces in incidence with age. Structural causes include cor pulmonale and pulmonary embolism. It can also be a consequence of myocardial infarction, ischaemia or inflammation. Other less common causes of RBBB include hypertension, cardiomyopathies, and congenital heart disease. RBBB can also result from idiopathic progressive cardiac conduction disease.

TACHYCARDIAS

Sinus tachycardia

Defined as persistent heart rate > 100 bpm. It is commonly due to pain or anxiety in response to increases in circulating catecholamines, but can also be due to dehydration/hypovolaemia, heart failure, hyperthyroidism, sepsis, stimulants, hypoxia and pulmonary embolism. Occurring in the context of myocardial infarction, sinus tachycardia can worsen ischaemia and hence prognosis. Unless there is any contraindication, such as cardiac failure or asthma, β-blockade should be considered (bisoprolol 1st line then metoprolol, which has a short half-life and requires 3 daily doses or atenolol). Consideration to giving IV β-blockers in acute MI should be made. Remember that tachycardia may be because of underlying failure or in later stages could suggest the development of a more significant complication such as ruptured chordae or VSD. So until these have been ruled out add in β-blockers cautiously.

Occasionally an inappropriate sinus tachycardia can be symptomatic and the introduction of ivabradine can be beneficial, occasionally with the cautious addition of β-blockers.

Postural orthostatic tachycardia syndrome

Postural orthostatic tachycardia syndrome (POTS) occurs predominantly in young women with normal hearts, who have a normal or elevated resting heart rate that further increases with upright posture along with an exaggerated postural sinus tachycardia elicited by upright tilt table testing in the absence of orthostatic hypotension. Optimal therapy is uncertain, but good hydration and increased salt intake is helpful. Rarely fludrocortisone (0.1 - 0.4 mg per day) or midodrine (2.5 - 10 mg TDS – non formulary) are used. Ivabradine which is a preferential drug to slow sinus node function can also be helpful in certain cases. Started at 2.5 mg BD with increments of 2.5 mg to a total dose of 10 mg BD. Ivabradine is often best combined with β-blockers in this scenario.

Sinoatrial nodal re-entrant tachycardia

P waves on the ECG appear normal. Most patients are asymptomatic but are noted to have a resting tachycardia between 100 and 150. In patients with persistent high rates there is a risk of tachycardia-induced cardiomyopathy. Adenosine may slow and then abruptly terminate the tachycardia to aid in diagnosis. In symptomatic patients or those with incessant tachycardia, an EP study is indicated. Ablation is usually the treatment of choice, but verapamil, digoxin and amiodarone have all been used with some success.
Supraventricular re-entry tachycardia

Most of the patients who present with paroxysmal supraventricular tachycardia have AVNRT (AV nodal re-entry tachycardia, 60% of SVT) or AVRT (Atrio-Ventricular re-entry tachycardia, 30% of SVT). These arrhythmias depend on AV nodal conduction and therefore can be terminated by transiently blocking AV nodal conduction. AVNRT is probably the commonest form of SVT encountered on the CCU. Rates vary from about 180 - 240 bpm. It is not common in the setting of acute coronary syndromes.

Vagal manoeuvres are the first-line treatment in haemodynamically stable patients. Vagal manoeuvres, such as breath-holding and the Valsalva manoeuvre (i.e. having the patient bear down as though having a bowel movement or blowing hard into a syringe to move the plunger), all slow conduction in the AV node and can potentially interrupt the re-entrant circuit.

Carotid massage is another vagal manoeuvre that can slow AV nodal conduction. Massage the carotid sinus for several seconds on the non-dominant cerebral hemisphere side. This manoeuvre is usually reserved for young patients. Due to the risk of stroke from emboli, auscultate for bruits before attempting this manoeuvre. Do not perform carotid massage on both sides simultaneously. Wait at least 10 seconds before trying the other side.

When SVT is not terminated by vagal manoeuvres, short-term management involves intravenous adenosine or calcium channel blockers. Adenosine is a short-acting drug that blocks AV node conduction; it terminates 90% of tachycardias due to AVNRT or AVRT. It is given as a rapid IV bolus followed by a saline flush, best administered via a three-way stopcock (6 mg stat followed by 12 mg if unsuccessful and then a further 12 mg if still unsuccessful), in the antecubital fossa followed by a long flush with 0-9% sodium chloride. Adenosine has a very short half-life. It may produce chest discomfort (which the patient should be warned about), transient hypotension and flushing. It should be avoided in patients with significant reversible airways disease. The crash trolley should be next to the patient when administering this drug in the unlikely event of significant bradyarrhythmia or more rarely tachyarrhythmia.

If the tachycardia continues despite successful induction of at least some degree of AV blockade, the rhythm is almost certainly atrial tachycardia or flutter; AVRT is excluded, and AVNRT is very unlikely

Synchronised cardioversion following sedation starting at 150J can be used immediately in patients who are hypotensive, have pulmonary oedema, have chest pain with ischaemia, or are otherwise unstable.

Verapamil (5 - 10 mg slowly IV) is an alternative but is dangerous and contraindicated in patients already on β-blockers or in patients with known significant LV dysfunction. If adenosine and verapamil are ineffective or contraindicated (particularly if the patient is symptomatic and hypotensive), electrical cardioversion under general anaesthetic or sedation should be performed.

Intravenous flecanide, esmolol, metoprolol and amiodarone may all convert rapid SVT. Flecainide is probably the best but should be avoided in patients with myocardial infarction (past or present). β-blockers, amiodarone and sotalol are all effective in preventing paroxysmal SVT in the setting of myocardial infarction. Contact the on-call electrophysiologist if concerned.
All patients with frequent attacks or drug side effects should be referred to an electrophysiologist for consideration of an electrophysiology study with a view to RF ablation to provide a cure and remove the need for antiarrhythmics.

Many individuals with recurrent AVNRT respond to β-blockers (avoid sotalol), diltiazem or verapamil (although β-blockers, verapamil and digoxin must not be used for WPW / AVRT). Second line drugs to prevent SVT are flecainide or amiodarone.

Asymptomatic adult patients with evidence of pre-excitation on the ECG (delta wave) should be referred for an outpatient EP assessment. An exercise test showing loss of conduction through the accessory pathway at higher heart rates suggests a safe pathway but ultimately an invasive EP assessment of antegrade pathway conduction would still be required due to risk of pre-excited AF and sudden death in those pathways able to conduct fast.

In some patients it may be suspected that they have paroxysmal SVT but it has proved difficult to capture on monitoring. In this situation it is possible to diagnose the presence of an antegradely conducting accessory pathway by means of a bedside adenosine challenge.

Management of Wolff-Parkinson-White Syndrome (with Pre-Excited Atrial Fibrillation)

These patients present with SVT in the form of AVRT. The management is the same as that as outlined above. However, pre-excited AF is more worrying. This is the rapid irregular rhythm of AF that conducts antegrade down the bypass tract to the ventricles. Remember that these bypass tracts can allow rates as high as 300 bpm to conduct from the atrium. They are different to the AV node which acts as a ‘gatekeeper’ to the atrial fibrillation where the ventricular rate can never get that fast. Hence the danger of this arrhythmia is that it is associated with sudden cardiac death. It can degenerate into VF quickly and should be diagnosed correctly and with speed. Features on the 12-lead ECG, which would point to this diagnosis, are a broad complex irregular tachycardia with bizarre QRS morphologies, which may vary from beat to beat. AV nodal blocking drugs such as digoxin, bisoprolol, amiodarone and verapamil must be AVOIDED. This will block conduction down the AV node and therefore increase conduction preferentially down the bypass tract. Electrical cardioversion is the preferred safest option, but flecainide can be helpful. Long term prophylaxis is not really an option as these patients should all be referred for further in-patient electrophysiological assessment and ablation due to the risk of sudden death.

Although challenging, it is useful to differentiate the location of the accessory pathway. The following figures illustrate the anatomical locations and the potential ECG appearances.

- 46 to 60 percent of accessory pathways are found within the left free wall space
- 25 percent are within the posteroseptal space
- 13 to 21 percent of pathways are within the right free wall space
- 2 percent are within the anteroseptal space
Schematic showing anatomic locations of accessory pathways as they cross the AV junction

The atrioventricular (AV) valve plane of the heart is viewed from the cardiac apex. The tricuspid valve is on the left in this figure and the mitral valve on the right; the coronary sinus, which provides the venous drainage of the heart, passes posterior to the mitral valve and empties into the right atrium above the tricuspid valve. All AV bypass tracts cross the AV valve plane; their locations are named with respect to this orientation (e.g., an anteroseptal bypass tract crosses the AV valve plane from atrium to ventricle in the region marked “anteroseptal” in the figure, at approximately 10 to 11 o’clock with respect to the mitral valve ring).

Algorithm (Milstein) to localize accessory pathway in preexcitation syndrome

Q or isoelectric delta wave in lead I, aVL, or V6

Yes

No

LBBB

Yes

No

RAS

LL

Rs or RS in V1, V2, or V3

Yes

No

PS

RL

QRs axis > 130°

Yes

No

RAS

RL

LL

Undetermined

Mapping algorithm for localization of accessory pathway in the preexcitation syndrome using the morphology of the delta wave on the electrocardiogram.

LBBB: left bundle branch block; RAS: right anteroseptal; LL: left lateral; PS: posteroseptal; RL: right lateral.

+ QRS ≥ 90 msec in L1 and Rs in V1 and V2.
ATRIAL FIBRILLATION (AF)

AF is the most common sustained cardiac arrhythmia and if left untreated is a significant risk factor for stroke and other co-morbidities. Management has been additionally influenced by the NICE guidance published in 2014 (CG180).

Identification

AF can be a major finding in many patients with co-existent ischaemia, hypertension, heart failure or presenting as an arrhythmia alone.

Symptoms - breathlessness, palpitations, chest pain, fatigue, oedema, syncope/dizziness and stroke/TIA.

Examination - irregular pulse, thyroid disease, valvular heart disease, heart failure.

Investigations - An ECG must be performed in all cases. An irregular pulse can be due to ectopics. Transthoracic echo should be performed in most cases to guide anti-arrhythmic therapy and longer term management of underlying structural heart disease. It can also guide the clinical risk stratification for anti-thrombotic therapy.

Treatment

This will depend on the type of AF (paroxysmal, persistent and permanent) and the timing of symptoms. The main options are rate control or rhythm control.

Acute onset atrial fibrillation

If the patient presents within 48 hours of the onset of symptoms and you can be certain of the timing of the onset, then cardioversion pharmacologically or electrically can be performed. If there are signs of haemodynamic instability, electrical cardioversion with sedation is required immediately.

Correction of electrolytes is mandatory and thyroid dysfunction needs to be excluded. If there is no underlying structural heart disease (confirmed on echo) or coronary disease, then IV flecainide is probably the most effective. It is given at a dose of 2 mg/kg infusion over at least 10 minutes to a maximum of 150 mg. Otherwise, IV amiodarone is the next best choice given as 300 mg IV loading over 1 hour followed by a further 900 mg over 23 hours through a large bore cannula/central line (to prevent thrombophlebitis). Amiodarone administered orally is an option, but the likelihood of achieving sinus rhythm is less. However, approximately 40% of patients will cardiovert with no treatment at all.

In patients who are not on an anticoagulant, anticoagulation should be commenced in the form of LMWH, in case the patient does not respond to pharmacological cardioversion. This will allow subsequent electrical cardioversion. Other drugs that can be used but are less effective are sotalol, esmolol, disopyramide, bisoprolol or calcium channel blockers.

If the duration of AF is longer than 48 hours but there is a pressing need to achieve SR, a TOE guided cardioversion can be considered. If there is no left atrial thrombus, the patient can be cardioverted with heparin cover and then commenced on an anticoagulant thereafter. See page 116 for CHA2DS2-VASc score.

Vernakalant (Brinavess), a drug currently available only intravenously is likely to be available during the lifetime of this document. It is a class I and III anti-arrhythmic with atrial selectivity which has been shown in trials to be quicker at achieving SR
(within minutes) compared to amiodarone. Its license is for patients with atrial fibrillation of less than 7 days duration. Dose is 3 mg/kg over 10 minutes. If after 15 minutes sinus has not been restored, a second infusion of 2 mg/kg over 10 minutes is administered. It should not be used in severe aortic stenosis, hypotension (systolic < 100 mmHg), NYHA class 3 or 4 and if the patient has had an acute coronary syndrome in the previous 30 days.

On-going medical therapy should be started to maintain SR. NICE recommends a standard β-blocker rather than sotalol. If AF recurs despite first line treatment with beta blockers Flecainide (initial dosage 50mg BD) can be added to the β-blocker in patients with normal ventricular function and no history or evidence of ischaemic heart disease. Alternatively the bisoprolol can be changed to sotalol (initial dosage 40mg BD).

Amiodarone is useful if there is structural heart disease. In patients in whom cardioversion is planned, consideration should be given to starting amiodarone 4 weeks before and continuing for 12 months after. Patients starting amiodarone should be aware of the potential for side effects affecting the thyroid, lung and liver. The incidence is approximately 15% over a three year period and most develop either hyper or hypothyroidism. TFT and LFT should be checked every 6 months and any new cough or increase in breathlessness should be investigated with PFTs and a CXR. Patients taking amiodarone can develop photosensitivity and the use of sun block on exposed skin is recommended.

Persistent atrial fibrillation

In patients presenting with AF of several days duration or more, a decision needs to be made over the option of either rate control (slowing the rate if indicated) or rhythm control (with a view to future cardioversion). All patients need to be assessed for anticoagulation (see page 116).

If a rate control strategy is decided upon, AF should be treated with rate control drugs like β-blockers (not sotalol) or non-dihydropyridine calcium channel blockers, with digoxin used in sedentary patients or as an adjunct to the former for better rate control. Some patients need to be on combinations such as a β-blocker and diltiazem. Amiodarone should not be used for long term rate control. Generally speaking, cardioversion is not offered to patients over the age of 75 or in patients in whom the duration of AF is several months. The likelihood of successful cardioversion or maintenance of SR after cardioversion is much lower in these populations, as it is in the presence of significant left atrial dilatation.

If patients remain symptomatic despite good rate control, a rhythm control strategy should be considered after a period of adequate anticoagulation (minimum three weeks).

In patients in whom cardioversion is planned, consideration should be given to starting amiodarone 4 weeks before and continuing for 12 months after. In the absence of structural or ischaemic heart disease many patients will maintain SR using flecainide. At the very least, patients undergoing cardioversion must have medication aimed at enhancing the success of the treatment. Without medication, recurrence approaches 100% at one year.

The following medications are most commonly employed: β-blockers, amiodarone, flecainide and propafenone.
If rate control in the long-term is all that can be achieved, but proves difficult with pharmacological methods, consideration should be given to referring the patient for AV node ablation and permanent pacing.

Paroxysmal atrial fibrillation

Paroxysmal AF can be treated with the same medications outlined previously for maintaining SR after cardioversion (β-blockers, amiodarone, flecainide). Although not recommended by NICE, local practice does include the option of employing sotalol in this situation. **Flecainide** should be avoided if there is evidence of structural heart disease or IHD.

Some patients with paroxysmal AF (and no structural heart disease) respond to a ‘pill in the pocket’ approach and take a stat dose of drug as soon as the AF starts and this can be highly successful in terminating an episode (**flecainide** 200 - 300 mg, **propafenone** 450 - 600 mg).

It is important that patients with continuing symptoms despite anti-arrhythmics should be referred to an Electrophysiologist for consideration of AF ablation or pacemaker and AV node ablation.

Anticoagulation

Anti-thrombotic treatment is of great importance in the management of AF. **Aspirin** is no longer offered as monotherapy for the prevention of stroke in patients with AF. The decision regarding the need for formal **anticoagulation** is decided with reference to the published CHA$_2$DS$_2$-VASc criteria (see below). Online calculators are available:

- https://chadsvasc.org/

CHA$_2$DS$_2$-VASc criteria:

C= congestive cardiac failure; H= Hypertension; A= Age; D= diabetes; S= stroke/TIA; V= Vascular disease; S= Sex (female).

Scoring is as follows: 2 points if age over 75, 2 points if previous stroke/TIA. 1 point is scored for other risks with the second age category being 65 to 74 years. The risk of thromboembolism is greater the more points are scored.

Low risk is considered 0 - 1 point, although NICE (CG180) recommends **anticoagulation** should be seriously considered for all apart from patients under the age of 65 whose only risk factor is their sex (female). For men with a score of 1, **anticoagulation** should be considered AND offered.

1 point or more and **anticoagulation** is recommended (taking bleeding risk into account and with the exception noted above). The risk is also greater in permanent AF compared to paroxysmal and risk assessed in sinus rhythm. A low threshold to **anticoagulate** must be applied in patients with rheumatic mitral stenosis. Another risk factor not included in the CHA$_2$DS$_2$-VASc score are patients with significantly enlarged left atria. In the context of STEMI the risk of stroke with AF is also higher. Patients do not need to be admitted to start **anticoagulation** and similarly, inpatients do not need to stay in until their INR is therapeutic when using **warfarin**. Slow initiation of **Warfarin** employing the Tait and Sefcick regime can be used (see page 237) or consideration of employing a **DOAC**. For high risk patients, where there is a
significant likelihood of left atrial thrombus, self-administration of LMWH until the INR is therapeutic should be considered. This is not required with the DOACs.

Before commencing anticoagulation, consideration needs to be made as to the potential bleeding risk. Use of the HAS-Bled score gives an indication of risk and looks at several factors: age over 65, hypertension (> 160 systolic), abnormal renal function (creatinine > 200), significant liver impairment, previous stroke, bleeding tendency, labile INRs (in patients on warfarin), concomitant aspirin use or alcohol abuse. One point (maximum 9) is scored for each. A score greater than 3 indicated patients at higher risk. Online calculators are available:

Anticoagulation can be achieved with warfarin (vitamin K antagonist), dabigatran (thrombin inhibitor), rivaroxaban (factor Xa inhibitor), apixaban (Factor Xa inhibitor) and edoxaban (Factor Xa inhibitor). The newer anticoagulants (DOACs) do not require INR monitoring and their onset of action is more rapid than warfarin (within hours). With both dabigatran and rivaroxaban compliance is crucial because they have short half-lives and so the omission of a single dose can result in loss of anticoagulation.

Rivaroxaban is prescribed at a dose of 20 mg OD. Creatinine clearance (CrCl) should be calculated (not eGFR) using the Cockcroft-Gault equation (need age, weight in kg, serum creatinine and sex). There are numerous web based calculators.

Reduce the dose to 15 mg OD if CrCl is 30 - 49 mL/minute; refer to haematologist if CrCl is 15 - 29; avoid if CrCl less than 15 mL/minute. In patients with hepatic disease associated with coagulopathy and clinically significant bleeding risk, including cirrhotic patients, rivaroxaban should not be prescribed. NICE recommends rivaroxaban in patients with previous stroke or TIA, heart failure, hypertension, diabetes and those aged over 75.

Apixaban is recommended by NICE in patients with non-valvular AF with one or more risk factors of prior stroke or TIA, age 75 or over, hypertension, diabetes or heart failure. The dose is 5mg BD (2.5 mg BD if over 80, weighs less than 60 kg, or if CrCl 15 - 29 mL/minute, or if serum-creatinine ≥ 133; avoid if CrCl less than 15 mL/minute). Apixaban should be considered in preference to rivaroxaban in patients with a history of previous GI blood loss or current dyspepsia.

Dabigatran is prescribed at 150 mg BD unless there is a higher risk of bleeding when the lower dose of 110 mg BD should be used. It is not frequently used in AF in Leicester. It must be stopped if the eGFR is less than 30. It should be used with caution with other P-glycoprotein substrates e.g. verapamil, amiodarone, clarithromycin) with at least a 2 hour gap between taking dabigatran and these drugs. NICE recommends its use in patients with previous stroke, TIA or embolism, LVEF less than 40%, NYHA heart failure class 2 or above, aged 75 or older, and aged 65 or older if there are other risks such as diabetes, coronary disease or hypertension.

Edoxaban is recommended by NICE in patients with non-valvular AF with one or more risk factors of prior stroke or TIA, age 75 or over, hypertension, diabetes or heart failure. The recommended dose is 60 mg OD. The recommended dose is 30 mg OD in people with one or more of the following clinical factors: moderate or
severe renal impairment (CrCl 15 - 50 mL/minute); body weight of 60 kg or less; concomitant use of the P-glycoprotein inhibitors e.g. ciclosporin, erythromycin or ketoconazole.

Anticoagulation should be continued for a minimum of 4 weeks (and generally longer) following successful cardioversion to exclude the risk of delayed embolisation. In order to increase the chances of long-term success, *antiarrhythmic* therapy needs to be considered, especially in patients with a relapse following previous electrical cardioversion. Many continue long term *anticoagulation* in patients even if they are successfully cardioverted, especially if there is a high risk of recurrence.

Unlike *warfarin*, there are few agents currently available to reverse the action of the *DOACs*. *Dabigatran* however does have a reversal agent (*Idarucizumab: Praxbind*, 5 g in 50 ml IV over 2 minutes) which is available within UHL for use in life-threatening circumstances. For the other *DOACs* prothrombin complex concentrate (*Optaplex*) should be considered (contact haematology on call).

If there are uncertainties when considering the use of *DOACs* there is excellent guidance available on Insite:

Cardioversion

External cardioversion should be considered in patients with AF if they present within 24 -48 hours of the onset.

For elective cardioversions, patients should be starved from midnight and no fluids from 06:00hrs (morning procedures) and starved 6 hours pre-procedure and no fluids 2 hours pre-procedure (afternoon procedures).

If already anticoagulated, then confirm adequate *anticoagulation* (INR > 2.0 if on *warfarin*) for the preceding 4 weeks to proceed. Check electrolytes and correct to normal range to proceed. Elective cardioversions are undertaken employing general anaesthesia.

For more urgent in-patient procedures, sedate with *midazolam* (using incremental doses of 1 mg). If there are issues regarding airway, respiratory disease, long term use of anxiolytics or neuromuscular disease, then anaesthetic help is mandatory. The pads should be AP (one on the sternum and one on the back) with high energies started (Biphasic 360 J) to ensure sinus rhythm is obtained on the first synchronised shock. A defibrillator with pacing capabilities is required in case of subsequent bradycardia. It is prudent to discontinue rate limiting medication (especially *digoxin*) at least 24 hours prior to cardioversion.

Drugs used prior to cardioversion (like *flecainide*, β-*blockers* or *amiodarone*) should probably be continued for at least 6 months. Risk of relapse in patients not treated with *antiarrhythmic* therapy is as high as 80% at 12 months. *Digoxin* should generally be avoided in the prevention of AF and is probably no better than placebo for chemical cardioversion.

Maintenance of sinus rhythm can often be achieved with *flecainide*, *propafenone*, *amiodarone* or *sotalol*. Class 1C drugs should be avoided in patients with evidence
of structural heart disease. If one drug fails, another may succeed. If patients feel symptomatically better with restoration of sinus rhythm but relapse back into AF despite antiarrhythmics then consider referral to an electrophysiologist for ablation.

Atrial Flutter

This is a different atrial rhythm to atrial fibrillation, with organised p waves (flutter waves) on the ECG but still irregular due to variable block. It is uncommon in a normal heart.

The treatment is very similar to that for AF. Initial management may be directed at controlling the ventricular rate if conduction is 2:1 (rate of ~ 150). A β-blocker, calcium channel blocker, digoxin, or some combination of these drugs may be tried. This may convert the patient to controlled atrial fibrillation. Acute rate control may be achieved by employing IV digoxin, diltiazem, verapamil or a β-blocker (such as esmolol, atenolol or metoprolol). As with atrial fibrillation, if the patient has been in flutter for ≥ 48 hours, anticoagulation should be commenced and cardioversion deferred for at least 3 weeks.

The arrhythmia is more difficult to cardiovert with medications and will require a higher proportion of electrical cardioversions. Caution also if using IV flecainide with atrial flutter due to the slowing of the flutter circuit with then 1:1 conduction to the ventricle more likely if no AV nodal blocking drugs like bisoprolol or verapamil are administered. In this situation it is sensible to administer rate control medication prior to an attempt at chemical cardioversion. Be aware of patients presenting with broad complex tachycardia (rate about 240 bpm) who are taking flecainide as this can be 1:1 flutter with aberrant conduction. In this situation, vagal manoeuvres or adenosine can slow the rate and flutter waves can be identified. IV AV nodal blocking drugs can then be administered. If unstable proceed to electrical cardioversion.

Most patients should be considered for catheter ablation due to its low risk and high success rate to prevent recurrence. Therefore refer to an electrophysiologist. The isthmus between the inferior vena cava and the tricuspid annulus (cavotricuspid isthmus) is an obligatory route for typical flutter, and, as such, is the preferred anatomic target for ablation.

Electrical cardioversion is not infrequently required because of the inherent resistance of atrial flutter to therapy. It may require as little as 15 J with a biphasic waveform defibrillator, although we generally recommend 360 J as the recommended starting energy to increase the likelihood the first shock works.

Long-term therapy to prevent attacks can be achieved with flecainide or propafenone if there is no underlying structural heart disease. Amiodarone and sotalol may also be quite effective. Anticoagulation should be seriously considered (as for AF).

Supraventricular Premature Beats (SBPs)

SBPs are fairly ubiquitous and will be seen frequently on 24 hour monitoring. Patients with very frequent SBPs should be considered for echocardiography. In most patients reassurance is all that is necessary. Occasionally β-blockers are used for symptomatic relief. Type IA, type IC, and type III antiarrhythmic agents are used occasionally. Non-dihydropyridine calcium antagonists are not effective.
Ventricular Premature Beats (VPBs)

Occasional VPBs are very common (40 - 75% of apparently healthy patients on 24 hour monitoring) and are almost always benign. In the context of myocardial infarction, the routine suppression of asymptomatic ectopics does not appear to impact on mortality, although the presence of significant numbers of ectopics may identify patients at higher risk of future events. They are more common in hypertensive patients with LVH, in the context of an MI, heart failure, HCM, and congenital heart disease.

In some cases very frequent ectopics (> 20% of complexes for RV ectopics, > 13% for LV ectopics) can produce ventricular dilation and dysfunction, the latter being an indication for treatment even in the absence of symptoms. An EP opinion regarding possible ablation should be sought if suppression proves challenging.

Unifocal ectopics arising from the RVOT (LBBB, inferior axis pattern) that increase with exercise can be associated with NSVT (see page 125). RF ablation should be considered.

Outside the context of STEMI they frequently do not need treatment but suppression may be achieved with **β-blockers, verapamil** or **diltiazem**. In severe symptomatic patients RF ablation may be an option. More potent **antiarrhythmic** drugs such as flecainide, propafenone (if no structural disease), amiodarone or sotalol can be effective.

Patients with troublesome ectopy should have 24 or 48 hour monitoring to assess frequency and determine if they are monomorphic or polymorphic. An echocardiogram should be considered. An exercise test will determine whether inducible VT is apparent and can detect ischaemia. Exercise-induced ectopy can frequently respond to **β-blockers**.

VENTRICULAR TACHYCARDIA (VT)

Rapid broad complex tachycardia shortly after STEMI is nearly always VT. Neither non-sustained VT (lasting < 30 s) nor accelerated idioventricular rhythm (usually a consequence of reperfusion with a rate < 120 bpm) occurring in the setting of STEMI serves as a reliably predictive marker of early VF. As such specific therapy is not indicated.

In patients with sustained VT who are haemodynamically compromised cardioversion is indicated (synchronised 150 – 200 joule shock with a biphasic defibrillator). Suppression can be achieved with **β-blockers** but care is needed if hypotensive or LV function is significantly impaired. Amiodarone can be tried (300 mg IV over a few minutes, followed by 900 mg over 24 hours). An alternative is lidocaine (50 - 100 mg over 3 - 5 minutes), which may be repeated after 5 minutes. No more than 200 - 300 mg should be given in one hour. An infusion may be commenced (4 mg/min for 30 minutes, reducing to 2 mg/min for 2 hours, then 1 mg/min, see page 235). In resistant VT, temporary overdrive pacing may occasionally prove useful. Administration of magnesium sulphate should be considered (magnesium sulphate 8 mmol, 2 g - in 20 ml of 0-9% sodium chloride - over 20 minutes followed by an infusion of 65 mmol, 16 g - in 48 ml of 0-9% sodium chloride - over 24 hours).

Outside the context of STEMI, recognition of VT can be challenging. If adenosine is given to high enough doses to cause symptoms but has no effect on the rate of a
broad complex tachycardia, VT must be the default diagnosis. Supraventricular tachycardia with aberrant conduction (i.e. BBB) may mimic VT. A very irregular broad complex tachycardia is usually AF with BBB and in young patients consider WPW AV re-entry tachycardia. Age > 35 years has a positive predicative value in favour of VT of 85%. VT is more likely in patients with known heart disease.

Features supportive of VT rather than aberrant conduction are:

- Wide QRS (> 140 ms)
- Left axis deviation
- Positive or negative concordance throughout the precordial (chest) leads, i.e. leads V1-6 show entirely positive (R) or entirely negative (QS) complexes
- RSR in V1 with RV1 > RV2
- AV dissociation (evidence of independent atrial activity)
- Fusion beats (halfway between ventricular and ‘normal’ beats)

In patients presenting with a broad complex tachycardia but no obvious infarction, and SVT is suspected rather than VT, adenosine can be given. The vast majority of AV nodal re-entry tachycardias will be terminated and atrial fibrillation or flutter will be slowed. VT will rarely respond at all.

Patients with VT ≥ 48 hours following myocardial infarction should be considered for angiographic and electrophysiological referral, as should patients presenting de novo with VT, especially in the context of poor LV function. An MRI scan should also be considered to evaluate for viability, ischaemia and scarring. Underlying ischaemia and heart failure must be addressed if present.

Patients unsuitable for revascularisation and/or implantable cardioverter defibrillators (ICDs) are best treated with antiarrhythmic therapy in the form of amiodarone and/or β-blockers. Mexiletine can be helpful but its supply is restricted. It should be remembered that the cause of VT may be underlying ischaemia and treatment directed at ischaemia may be very beneficial, particularly β-blockers. In addition, the use of ACEI may also reduce the incidence of arrhythmic deaths following myocardial infarction. The routine use of amiodarone as a prophylactic against arrhythmias following myocardial infarction should be avoided. Response to therapy should be assessed with Holter monitoring.

In patients with documented IHD, even NSVT should be treated. If there is depressed LV function (LVEF < 40%), a VT study should be considered and an ICD implanted if there is inducible VT. Essentially anyone with VT and EF < 35% should be considered for ICD. If QRS > 120 ms CRT-D should be considered depending on symptoms (see page 146). ICD therapy should be at least considered in all patients presenting with VT (see guidelines page 130).

Electrical Storm

Patients sometimes present with multiple episodes of VT or VF over a short period of time requiring multiple cardioversions or device-related therapies (anti-tachycardia pacing: ATP, defibrillation). The definition is loosely > 3 ICD therapies in < 24 hours, 2 or more unstable episodes in < 24 hours in patients without an ICD or incessant VT lasting for hours. It usually occurs in the context of severe underlying structural heart disease. Occasionally there may be specific underlying triggers:
• Drug toxicity.
• Electrolyte disturbances (i.e. hypokalaemia and hypomagnesaemia).
• New or worsened heart failure.
• Acute myocardial ischaemia.
• QT prolongation (which may be related to drug toxicity, electrolyte imbalance, or an underlying syndrome such as long QT syndrome.

Monomorphic VT related to scar or re-entry accounts for 85 to 90%, primary VF up to 20%, mixed VT/VF 5-15% and polymorphic VT up to 10%.

The management of these patients is challenging but also very individualised.

1. Ensure generous amounts of **benzodiazepines** are administered to reduce anxiety. If recurrent shocks consider referral to ITU so that the patient can be anaesthetised with **propofol** which itself has anti-arrhythmic properties.

2. Identify and correct any electrolyte imbalance. It is worth giving IV **magnesium sulphate**, especially if prescribed diuretics. The serum magnesium does not reflect the level of magnesium in the heart (**magnesium sulphate**: 8 mmol, 2 g - in 20 ml of 0·9% **sodium chloride** - over 20 minutes followed by an infusion of 65 mmol, 16 g - in 48 ml of 0·9% **sodium chloride** - over 24 hours).

3. Keep potassium levels at the high end of normal (4·5-5·0 mmol).

4. Treat any heart failure with IV diuretics and even intra-aortic balloon pump to offload. **ACEI** and **β-blockers** should also be used or continued if possible.

5. In certain cases, treatment of ischaemia may be helpful. Rarely, coronary angiography may identify a treatable stenosis that is causing the VT. Stabilisation with an intra-aortic balloon pump may also help. If scar related, surgical aneurysmectomy may be beneficial to prevent future episodes.

6. Intravenous anti-arrhythmic drugs should be used. **Amiodarone** remains the most efficacious drug but does have side effects related to long term treatment. This is worth the small risk given the life threatening VT storm. It may require a few days of repeated IV loading that should be administered through a centrally placed line rather than a cannula to prevent thrombophlebitis/thrombosis. Think of re-loading patients if they have recently stopped the drug or are maintained on only 100 mg OD. Other common side effects are fever, hypotension, abnormal LFTs and nausea. Oral administration should be continued after IV loading at 200 mg OD. **β-blockers** should also be started or up-titrated to maximally tolerated doses and have been shown to be beneficial in combination with **amiodarone** to stop VT. IV **lidocaine** (loading and maintenance) can be useful in those patients already maintained on **amiodarone**. When the VT is stopped, start **mexililne** orally whilst weaning the IV **lidocaine**. In special circumstances when some of these drugs are not tolerated then oral **flecainide** can be used if an ICD is implanted for fear of pro-arrhythmic effects. IV **steroids** and latterly oral can be useful in inflammatory cardiomyopathies such as sarcoid if biopsy/CMR proven.

7. If there is an implanted ICD, check that all shocks appropriate and not due to atrial fibrillation, atrial flutter or acceleration of the VT into the shockable zone. Recent evidence suggests that shocks are associated with a poorer outcome. Make sure there is prolonged detection so that non-sustained arrhythmias are not treated.
ATP should only be used in slow VT cases and well tolerated VT patients. Ideally, ICD shocks should only be programmed in the VF/very fast VT zone. This will be much individualised depending on the VT rate and patient haemodynamics. Also consider pacing to prevent bradycardias related to anti-arrhythmics/conduction system disease. Atrial pacing would be best if this prevents ventricular pacing but sometimes a short period of higher rate ventricular pacing (90-100 bpm) is required to stabilise the situation. This should be reversed back to normal rates as the treatments take effect. Rarely, VT storm can be initiated after a biventricular pacemaker is implanted. This may relate to pacing near a scar inducing VT. Consider switching off V pacing or trying a different configuration to prevent VT being induced.

8. In patients without an ICD, anti-tachycardia (overdrive) pacing with a temporary pacemaker can be tried. It is usual to pace at a rate that is slightly faster (eg, at a cycle length 10 to 15% shorter) than the rate of the detected tachycardia.

9. Lastly, it would be advisable to inform one of the consultant electrophysiologists to review the patient and consider VT ablation. These patients are very sick with failing hearts and we would rather not perform ablation as it highly risky with poor outcomes such as death. Sometimes we have no choice despite full medical therapy. On-going trials are looking at prophylactic ablation of scar in patients with cardiomyopathy to see if this prevents these episodes and improves longer term outcomes.

Arrhythmogenic right ventricular cardiomyopathy (ARVC)

ARVC is predominantly a genetically determined, primary heart muscle disorder affecting the right ventricle characterised pathologically by fibro-fatty replacement of the ventricular myocardium, progressive ventricular dilatation with global and regional dysfunction, and a propensity towards ventricular arrhythmias and sudden cardiac death (SCD). There is increasing recognition that ARVC is a biventricular disease entity, with pathological/autopsy studies of victims of SCD reporting left ventricular involvement (in isolation or biventricular) in more than 80% of cases. Such observations have led to cardiologists propose the term **arrhythmogenic cardiomyopathy (ACM)** to describe the disease.

The prevalence of ACM/ARVC is estimated to be in the region of 1:2000 to 1:5000 of the general population. The disease has a male predominance of approximately 3:1. Presentation is usually between late puberty, adolescence and early adulthood with a median presenting age of 29 years.

Symptoms include palpitations, pre-syncope and syncope particularly on exertion. In many cases, there is a family history of premature cardiac death, syncope or sudden death. In the early ‘concealed’ phase of the disease, individuals are often asymptomatic but are at risk of ventricular arrhythmia and SCD, which may be the first presentation. Progressive disease can manifest with symptoms of heart failure as right and/or left ventricular dysfunction develop.

The 12-lead ECG is abnormal in most patients with ACM/ARVC with repolarisation and depolarisation changes. Repolarisation changes include T-wave inversion in the right precordial leads - these are present in nearly 85% of patients with the classical right-dominant ACM (or ARVC). Inferior and lateral lead T-wave inversions are related to the left dominant ACM. Depolarisation changes in ACM include QRS notching, RBBB (complete or incomplete) and late potentials, detected with greater
sensitivity by use of signal average ECG techniques. In a small minority, late potentials may manifest on the resting ECG as an epsilon wave, a small deflection in the early portion of the ST segment that is best observed in lead V1.

Ambulatory ECG is useful for the diagnosis and follow-up of patients with ACM, typically demonstrating frequent ventricular extra-systoles or non-sustained/sustained VT of left bundle branch block bundle morphology with superior axis; when left bundle and inferior axis forms occur, differentiation from the more benign RVOT VT is challenging.

Echocardiography is the first line imaging modality in ACM/ARVC, and the most commonly used imaging tool for follow-up of ACM/ARVC patients. The typical morphological features in right dominant ACM/ARVC patients are RV dilatation and reduced regional or global RV function.

Cardiac MRI (CMR) is the preferred imaging modality in ACM/ARVC and provides tissue characterisation and identification of intra-myocardial fat and fibrosis in addition to assessment of biventricular structure and function. In the left-dominant ACM, the morphological abnormalities of the left ventricle may be mild or even undetectable at echocardiography, and CMR is the only imaging test to identify altered signal intensity, consistent with fibro-fatty replacement in the sub-epicardial region or mid-wall of the left ventricle.

It should be noted that complex RV anatomy is a clear limitation for all imaging modalities, and the risk to over-diagnose ACM/ARVC by CMR has been acknowledged.

Although not routinely performed given the advances in cardiac imaging, myocardial biopsy can be performed in patients with unclear cardiomyopathies and in patients with VT and structural changes not typical of ACM/ARVC (e.g. sarcoidosis or myocarditis). However, myocardial biopsy has a low diagnostic sensitivity due to the patchy distribution of the disease and there are concerns regarding the risk of perforation and tamponade.

The diagnosis of ACM/ARVC is complicated by variable phenotypic expression and frequently non-specific manifestation of the condition. Current Task Force Criteria for ARVC diagnosis (2010 Task force criteria - see link) combine diagnostic criteria from six categories.

https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.108.840827

Within each category, major and minor criteria were assigned to contribute towards a composite likelihood of true diagnosis of ARVC. Combinations of findings establish diagnostic grades of ‘definite’, ‘borderline’ or ‘possible’ ARVC. These criteria should be used in caution in athletic individuals due to phenotypic overlap between exercise-induced physiological right ventricular remodelling and pathological remodelling in ARVC. Additionally, these criteria do not consider left ventricular involvement.

There are no curative therapies available for ACM/ARVC. Therapeutic management focuses on symptom relief and prevention of ventricular arrhythmias and sudden cardiac death.

Prevention of sudden cardiac death is achieved through implantation of an ICD in high risk cases which includes affected individuals who have survived a cardiac arrest or have suffered sustained ventricular arrhythmia. Given the young age of the
patients, one should consider if a subcutaneous ICD is appropriate on an individual case basis. Although risk stratification for primary prevention is challenging, patients with syncope, findings of non-sustained ventricular arrhythmia and those with greater than moderate right ventricular or left ventricular dysfunction are considered higher risk for sudden cardiac death.

Due to risk of sudden cardiac death in patients with ACM/ARVC, international consensus-based guidelines for sports participation advocate that that proven cases should not participate in competitive sport and should be advised to limit their exercise programmes to leisure-time activities and remain under clinical surveillance. These recommendations also apply to individuals who are genotype positive/phenotype negative.

There is no prognostic role for any pharmacological therapies, but β-blockers and amiodarone can be used to treat ventricular arrhythmias and act as adjunctive therapy for patients receiving ICDs. Catheter ablation therapy for ventricular arrhythmia has a limited role but can be considered in patients with ICDs experiencing ventricular tachycardia despite optimal medical therapy.

Standard heart failure therapies including diuretics and ACE-I are generally used in cases of clinical ventricular dysfunction although a solid evidence base is lacking. Cardiac transplantation has been reported in patients with severe cardiac failure and intractable arrhythmias.

Patients with ACM/ARVC should be followed up periodically to assess for changes in clinical status to guide risk stratification. First degree family members should be offered screening with ECG and cardiac imaging to facilitate early identification of asymptomatic carriers.

In families with a genetic variant classified as pathogenic, it may be reasonable for asymptomatic members of a family who do not have the familial variant and have a normal cardiovascular evaluation to be released from regular screening and educated to return if disease symptoms occur. Where a causative/pathogenic mutation has not been established in the proband, it is reasonable to offer first degree relatives clinical screening every 1-3 years from the age of 10-12 years.

Management of patients with ACM/ARVC and screening of their family members is best performed in a combined cardio-genetic clinic. Please consider referring these individuals to Dr Harshil Dhutia, who runs the adult inherited cardiac disease service at Glenfield Hospital.

RVOT tachycardia

RVOT tachycardia is also known as repetitive monomorphic VT (RMVT). It occurs almost exclusively in young or middle aged patients without structural heart disease.

The ECG features are of a LBBB morphology VT with a rightward or inferior axis. Episodes are frequently associated with stress or exercise. The prognosis is generally good. More aggressive therapy should be directed at patients with a history of syncope, very fast VT (> 230 bpm) and very frequent ectopy.

For prevention, verapamil and β-blockers are first line. Amiodarone and sotalol can be helpful, as can Class I drugs. To avoid long term use of medication in younger patients, RF ablation should be seriously considered.
Channelopathies

Channelopathies are a group of relatively rare conditions caused by mutations in genes encoding cardiac ion channels. These conditions are associated with an increased risk of syncope and sudden death due to ventricular arrhythmias in individuals with a structurally normal heart. The risk of sudden cardiac death is highly variable between patients and risk stratification is central to management.

Forty percent of sudden unexpected natural deaths in people under the age of 35 years are associated with negative autopsy, and channelopathies are the prime suspects in these cases. Often called sudden arrhythmic death syndrome (SADS), long QT syndrome (LQTS), Brugada syndrome (BrS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) are the most commonly identified.

LQTS has an estimated prevalence of 1:2000. BrS is most common in south east Asian populations where it may affect as many as 1:1000 individuals. The incidence of CPVT is 1:10,000 and it most commonly presents in children and young adults.

The channelopathies are caused by genetic variants in genes encoding proteins involved in the propagation of the cardiac action potential. Pathogenic mutations lead to an absence of or defective protein product. The pathophysiology of specific syndromes relates to the change in protein function.

LQTS manifests as a prolonged QT interval on the ECG and predisposes to initiation of torsades de pointes ventricular tachycardia.

CPVT can lead to delayed after-depolarisation initiating bidirectional or polymorphic ventricular tachycardia.

The pathophysiology of BrS is less well understood with abnormal depolarisation and repolarisation likely contributing. The electrical instability is most pronounced in the right ventricular outflow tract, where there may also be subtle structural changes and increased fibrosis.

As well a common genetic aetiology, channelopathies also share an increased risk of syncope and sudden cardiac death due to ventricular arrhythmias. Sudden cardiac death may be the first clinical presentation. In addition to a history of syncope, care should also be taken to enquire about seizures or unexpected accidents.

There may also be a family history of known channelopathy or sudden unexplained death.

As these conditions are associated with normal heart structure and physical examination is usually normal.

In LQTS, clinical features can be related to the affected gene. LQTS type 1 (KCNQ1 gene) is most common and is classically associated with events during exercise, particularly swimming. LQTS 2 (KCHN2) is typically associated with events triggered by sudden stimuli such as a ringing alarm clock or sudden startle. Clinical events in LQTS 3 (SCN5A) are more common in sleep or at rest.

Clinical events in BrS typically occur during sleep or at rest and are 10-fold higher in males particularly aged between 30-50 years. In contrast, CPVT typically presents in children or young adults who commonly present with unheralded syncope during sport.
The risk of sudden cardiac death differs between clinical syndromes and is also highly variable between individuals with a specific diagnosis even when they share an apparently common genetic aetiology.

Investigations and diagnostic criteria

The ECG and genetic testing are the key investigations. A resting 12 lead ECG may be diagnostic but as clinical phenotypes vary, multiple ECGs with provocative testing may be required (e.g. exercise testing, pharmacological testing).

When assessing for LQTS, the QT interval should be measured manually on the 12-lead ECG using lead 2 or lead V5 and corrected for heart rate (most commonly using Bazett’s formula) – see figure below. T-wave morphology may also be abnormal in LQTS and should be noted. In LQTS patients (particularly LQTS 1), paradoxical prolongation of the QT interval at higher heart rates can be observed and exercise testing is recommended. Although an isolated QTc >500 msec on more than one occasion is considered diagnostic on the resting ECG, many patients with LQTS have shorter QTc duration and diagnosis of LQTS is made using the Schwartz score. This scoring system encompasses the clinical and family history, and ECG characteristics of the individual to determine the probability of LQTS.

Bazett’s formula and Schwartz scores can be found using the following links:

BrS is diagnosed by the presence of the characteristic coved shaped ST segment elevation (type 1 Brugada pattern - see next page) in the right precordial leads V1 and/or V2, which can also be recorded at the second or third intercostal space to improve sensitivity (i.e. high lead ECG). Since this pattern may be transient, in suspected cases with non-diagnostic ECG a pharmacological provocation test may be considered. Sodium channel blockers such as ajmaline or flecainide can precipitate the type 1 Brugada pattern in affected individuals. A transient type 1 pattern can also be observed in affected individuals who present with a febrile illness. The presence of the 1 Brugada pattern on the ECG either spontaneously or precipitated by fever or drugs is considered sufficient to make the diagnosis of BrS. Neither symptoms nor family history is required to make the diagnosis, but in the future a scoring system similar to that used in LQTS may be adopted.
An exercise ECG is essential in CPVT as the resting ECG is normal. Development of bidirectional VT (see below) or polymorphic ectopic beats or VT during exercise is diagnostic in those with a structurally normal heart. The strength of the clinical diagnosis is greater in those with unexplained syncope or who are family members of a known CPVT patients.

Genetic testing

Genetic testing is indicated for all individuals with the clinical phenotype of a channelopathy. Genetic testing can demonstrate a pathogenic mutation in 70% of cases of LQTS, 20-25% of cases of BrS and in 60-70% of cases with CPVT. Given that these conditions are inherited in an autosomal dominant mode, at-risk family members can be offered cascade genetic screening if a pathogenic variant is identified in the index case.
Treatment

<table>
<thead>
<tr>
<th>Lifestyle</th>
<th>LQTS</th>
<th>BrS</th>
<th>CPVT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avoid QT prolonging drugs.</td>
<td>Avoid certain drugs (www.brugadadrugs.org)</td>
<td>Exercise restriction</td>
</tr>
<tr>
<td></td>
<td>Less evidence for exercise restriction in treated patients.</td>
<td>Treat fever promptly.</td>
<td></td>
</tr>
<tr>
<td>Pharmacological</td>
<td>β-blockers (preferably nadolol or propranolol).</td>
<td>Nil</td>
<td>β-blockers (preferably nadolol or propranolol) +/- Flecaainde if ongoing symptons.</td>
</tr>
<tr>
<td></td>
<td>Mexiletine (LQTS 3).</td>
<td>Consider quinidine if frequent arrhythmic events.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use isoprenaline in arrhythmic storms.</td>
<td></td>
</tr>
<tr>
<td>Surgical</td>
<td>Sympathetic denervation in selected high-risk cases.</td>
<td></td>
<td>Sympathetic denervation in selected high-risk cases.</td>
</tr>
<tr>
<td>ICD</td>
<td>If symptomatic despite optimal medical therapy</td>
<td>Can consider in patients with spontaneous type 1 ECG who experience syncope</td>
<td>If symptomatic despite optimal medical therapy</td>
</tr>
<tr>
<td></td>
<td>In survivors of cardiac arrest</td>
<td>In survivors of cardiac arrest</td>
<td>In survivors of cardiac arrest</td>
</tr>
</tbody>
</table>

These cases should be discussed in devices/EP MDT*

<table>
<thead>
<tr>
<th>Follow-up</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with channelopathy should be followed up periodically to assess for changes in clinical status to guide risk stratification and review response to therapy.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First degree family members should be offered clinical screening to facilitate early identification of asymptomatic carriers. In families with a genetic variant classified as pathogenic, it may be reasonable for asymptomatic members of a family who do not have the familial variant and have a normal cardiovascular evaluation to be released from regular screening and educated to return if disease symptoms occur. Where a causative/pathogenic mutation has not been established in the proband, it is reasonable to offer first degree relatives clinical screening every 1-3 years.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management of patients with channelopathy and screening of their family members is best performed in a combined cardio-genetic clinic. Please consider referring these individuals to Dr Harshil Dhutia, who runs the adult inherited cardiac disease service at Glenfield Hospital.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ventricular Fibrillation (VF) and Cardiac Arrest

VF may follow complex VEBs and/or VT, but may also occur spontaneously after myocardial infarction. A precordial thump should be applied followed by immediate cardioversion if unsuccessful. In the context of STEMI, β-blockers reduce the incidence of VF. Correction of hypomagnesaemia and hypokalaemia is encouraged. Prophylaxis with lidocaine may reduce the incidence of VF but appears to be associated with increased mortality and has therefore been abandoned. For frequent episodes of VF, amiodarone should be given in the form of 300 mg IV slow bolus followed by an infusion of 900 mg over the next 24 hours.

In patients who have been successfully resuscitated from an out of hospital VF arrest, consideration should be given to immediate angiography. This is essentially mandatory if the ECG suggests ischaemia and if intervention is likely to affect outcome. For patients who are intubated, immediate anaesthetic support is needed. Continued ventilatory support and cooling may be necessary.

ICD Therapy

The indications for ICD therapy were relaxed in June 2014 (NICE TA 314).

For secondary prevention for patients who present, in the absence of a treatable cause, with one of the following:

- Having survived a cardiac arrest due to either VT or VF (outside context of acute MI).
- Spontaneous sustained VT causing syncope or significant haemodynamic compromise.
- Sustained VT without syncope or cardiac arrest, and who have an associated reduction in ejection fraction (LVEF of less than 35% - no worse than class III of the NYHA functional classification of heart failure).

For primary prevention of arrhythmias, for patients who have:

Left ventricular dysfunction with an LVEF of less than 35% (no worse than class III of the NYHA functional classification of heart failure). In patients with LBBB, consideration should be given to resynchronisation therapy (see page 146).

Primary prevention ICDs are only considered at least a month after MI, and in patients on optimal medical therapy, with an anticipated life expectancy of more than a year with a good quality of life. Co-morbidities should be considered when selecting patients for ICD implantation. An ICD is inappropriate in patients with terminal cancer or other illnesses significantly expected to shorten life, including patients with NYHA class IV heart failure.

Ultimately, patient choice is key. The benefit should be balanced against the risks for the patient’s complications from ICDs, which can be as high as 9.1% at 16 months, including lead displacement, pneumothorax and haematomas. The psychological burden of having an ICD should also be considered.

In addition, primary prevention is appropriate in patients with a familial cardiac condition with a high risk of sudden death, including long QT syndrome, hypertrophic cardiomyopathy, Brugada syndrome, ARVC, or have undergone surgical repair of congenital heart disease.
ICD therapy should be considered as both primary and secondary prevention in patients with HCM (see page 153).

The choice of what type of ICD is important. ICDs combined with CRT are discussed elsewhere (see page 146). A dual chamber ICD should be considered if the patient has sinus bradycardia or sinus node disease. Leads are either single or dual coil. Single coil leads should be favoured in younger patients (easier to extract).

Subcutaneous ICD (S-ICD) is an alternative approach to the transvenous ICD. It is comprised of a subcutaneous lead that runs parallel to the left sternal edge and along the inferior border of the heart to a generator in the axilla. SICD should be implanted in patients with a pacing indication for bradycardia, anti-tachycardia pacing, or need for cardiac resynchronisation therapy. It should be considered as an option in all patients, particularly the young, to prevent potential long term problems seen with transvenous leads (lead failure, vascular obstruction, infection). S-ICD has several potential advantages, including the preservation of venous anatomy (or where venous anatomy is unattractive), and is theoretically easier and safer to extract in cases of infection.

ICD and Driving

The advice that must be given to people who drive is complicated and prone to change. See page 204.
Figure 1: Resuscitation Council algorithm for advanced life support.
Figure 2: Resuscitation Council algorithm for management of tachycardia.
Figure 3: Resuscitation Council algorithm for management of bradycardia.

![Resuscitation Council (UK) Adult Bradycardia Algorithm Diagram](image)

- **Assess using the ABCDE approach**:
 - Monitor SpO₂ and give oxygen if hypoxic
 - Monitor ECG and BP, and record 12-lead ECG
 - Obtain IV access
 - Identify and treat reversible causes (e.g., electrolyte abnormalities)

- **Adverse features?**
 - Shock
 - Syncope
 - Myocardial ischaemia
 - Heart failure

 - **Yes**
 - **Atropine 500 mcg IV**
 - **Satisfactory response?**
 - **No**
 - **Consider interim measures**:
 - Atropine 500 mcg IV repeat to maximum of 3 mg
 - Transcutaneous pacing
 - Isoprenaline 5 mcg min⁻¹ IV
 - Adrenaline 2-10 mcg min⁻¹ IV
 - Alternative drugs*
 - **Seek expert help**
 - **Arrange transvenous pacing**
 - **Yes**
 - **Risk of asystole?**
 - **Recent asystole**
 - Mobitz II AV block
 - Complete heart block with broad QRS
 - Ventricular pause > 3 s
 - **Yes**
 - **Continue observation**
 - **No**

* Alternatives include:
 - Aminophylline
 - Dopamine
 - Glucagon (if bradycardia is caused by beta-blocker or calcium channel blocker)
 - Glycopyrronium (may be used instead of atropine)
SYNCOPE

Syncope is an abrupt and transient loss of consciousness, associated with loss of voluntary muscle tone, followed by rapid and usually complete recovery. It is important to distinguish pre-syncope from dizziness (vertigo) as patients may mean different things when they complain of dizziness. It is also important to differentiate syncope from mechanical falls. It is important to establish what happened before, during and after the syncopal episode. There are recent guidelines on the investigation and management of syncope from 2018.

There are different types of syncope: reflex or neurally mediated syncope, orthostatic hypotension and cardiac arrhythmia syncope.

Neurally mediated syncope is often associated with prodromal symptoms (feeling hot, sweating, light-headedness, visual changes). It is usually short lived. On regaining consciousness there is usually rapid recovery with no drowsiness, confusion or headache. It may occur sitting or standing but not lying. The most common type of neurally mediated syncope is neurocardiogenic (vasovagal) syncope. Other neurally mediated syncopal conditions include carotid sinus syndrome or syncope after urination, defaecation, swallowing or coughing (‘situational’ syncope). Getting information from witnesses if possible can be invaluable.

A simple faint can be categorised by the 6 P’s: Posture (prolonged standing or sitting), Provoking factors (pain, fear), Prodromal symptoms, Post-syncope nausea or vomiting, Post recovery recurrence syncope provoked by sitting or standing, Previous episodes. Advice needs to include avoidance of triggers, ensuring adequate hydration, limiting alcohol etc.

Orthostatic syncope occurs when there is insufficient vasoconstriction in response to orthostatic stress (standing). Classic orthostatic hypotension is defined as a reduction in systolic BP >20 mmHg and >10 mmHg in diastolic within 3 min of standing.

Cardiac syncope refers to the conditions where syncope is caused by a decrease in cardiac output due to a primary cardiac aetiology. The common causes of cardiac syncope are arrhythmia (tachyarrhythmia and bradycardia) and fixed or dynamic obstruction (HOCM, aortic stenosis, left atrial myxoma, pulmonary hypertension, pulmonary embolism). A family history of sudden death is a concern.

Neurally mediated syncope is more common in the following circumstances:

- Absence of heart disease
- Long history of recurrent syncope
- After sudden unexpected unpleasant sight, sound, smell or pain
- Prolonged standing or crowded, hot places
- Nausea, vomiting or abdominal pain associated with syncope
- During a meal or post-prandial
- With head rotation or pressure on carotid sinus (as in tumours, shaving, tight collars)
- After exertion
Epilepsy more likely if:
- Abnormal movements (brief seizure activity can occur during simple fants)
- Abnormal behaviour
- Unusual posturing
- Head turning to one side
- Post-ictal confusion
- Tongue biting (the side of the tongue) or amnesia

Orthostatic hypotension is more likely:
- After standing up quickly
- Temporal relationship with start or changes of dosage of vaso-depressive drugs leading to hypotension
- Excessive diuresis
- Prolonged standing especially in crowded, hot places
- Presence of autonomic neuropathy (i.e. parkinsonism, diabetes)
- Standing after exertion
- Prolonged immobility or bed rest
- Endocrine disorders such as Addison’s disease

Cardiac syncope is more likely:
- Presence of definite structural heart disease
- Family history of unexplained sudden death or channelopathy
- During exertion, or supine
- Abnormal ECG
- Sudden onset palpitation immediately followed by syncope
- ECG findings suggesting arrhythmic syncope:
 - Bifascicular block (defined as either LBBB or RBBB combined with left anterior or left posterior fascicular block)
 - Other intraventricular conduction abnormalities (QRS duration ≥ 120 ms)
 - Mobitz I second degree AV block
 - Asymptomatic inappropriate sinus bradycardia (<50 bpm), sinoatrial block or sinus pause ≥3 s in the absence of negatively chronotropic medications
 - Non-sustained VT
 - Pre-excited QRS complexes
 - Long or short QT intervals
 - Early repolarization
 - RBBB pattern with ST-elevation in leads V1-V3 (Brugada syndrome)
 - Negative T waves in right precordial leads, epsilon waves and ventricular late potentials suggestive of ARVC
 - Q waves suggesting myocardial infarction
Single episodes rarely warrant investigation or admission. Recurrent episodes require further investigation. A careful history is mandatory. Where a cardiac cause is thought to be very likely (see above) admission may be indicated. Initial assessment should include:

- Pulse at rest and on standing
- BP both arms
- BP after lying for 5 minutes
- BP after standing for 3 minutes
- Listen for murmurs or bruits
- Arrange FBC, U&E, Glucose
- ECG

If an arrhythmia is likely, ambulatory ECG should be arranged (inpatients can be monitored and do not need a 24 hour ECG or Looper). The appropriate type of recording and length needed should be gauged by the frequency of events. Infrequent episodes (< every 2 weeks) may benefit from assessment with an implantable cardiac Looper (ILR). The bulk of arrhythmia-related syncope detected by loop recorders are bradycardias, especially in the elderly. An ILR is extremely useful for patients with recurrent syncope that occur less often than once a week. This is performed under local anaesthesia and enables correlation of clinical events to cardiac rhythm.

An echo (and occasionally CMR) is indicated if known heart disease or suspicion of structural disease.

Electrophysiology studies are underutilised generally in the investigation of syncope but the diagnostic yield is quite high. EP studies are of particular use in older patients with evidence of left ventricular dysfunction or an abnormal ECG.

Admission may also need to be considered in the presence of the following: significant trauma, significant dehydration, significant GI blood loss/anaemia, frail elderly, symptomatic significant orthostatic BP fall (greater than 20 mmHg systolic drop or systolic below 90 mmHg on standing).

The red flags for patients with syncope are: abnormal 12 lead ECG, family history of sudden cardiac death, older patients, syncope with exertion or when supine, structural heart disease and history of heart failure.

An excessive rise in heart rate (≥ 30 beats/min) or to a rate of 120 bpm or more (without significant hypotension) is suggestive of postural orthostatic tachycardia syndrome (POTS). This is readily diagnosed by a tilt study. Tilt studies are generally indicated in patients with frequent episodes of syncope where an arrhythmia is felt to be unlikely.

In patients over the age of 40, carotid sinus hypersensitivity should be considered. Carotid massage should be performed in a controlled environment with ECG recording and resuscitation equipment available. Carotid sinus massage should be avoided in patients with history of transient ischemic attack, stroke or MI within the past three months and in patients with carotid bruits (except if carotid Doppler studies excluded significant stenosis). Carotid sinus massage is diagnostic if
syncope is reproduced together with asystolic longer than 3 seconds and/or a fall in systolic BP > 50 mmHg.

Please refer to the DVLA guidance (page 204) when advising patients whether they can drive.

Management of neurocardiogenic syncope includes patient education, lifestyle changes and physical counterpressure manoeuvres. Avoidance of triggers (prolonged standing, moving from lying/sitting to standing quickly, hot baths/showers, fasting, excessive alcohol intake or drugs with vasodepressor properties) and ensuring adequate salt and fluid intake may reduce syncope frequency.

Common physical counterpressure manoeuvres include leg crossing, limb and/or abdominal contraction, isometric arm contraction, bending forward, squatting, toe raising and knee flexion. The most effective and least cumbersome appears to be leg crossing and whole body muscle tensing in an attempt to mitigate the blood pooling to prevent syncope.

Further interventions such as an increase in salt and water, tilt training, head-up sleeping, abdominal binders, elastic stockings and medical therapy are considered for recurrent neurocardiogenic syncope. It is recommended that patients with recurrent neurocardiogenic syncope drink 2-3 litres of fluid per day or enough fluid to avoid dark urine and ingest 10 g of salt per day.

Evidence of benefit utilising **fludrocortisone** is lacking. **β-blockers** may be of benefit in patients over the age of 42. There is also a suggestion that SSRIs like **paroxetine** (20 mg OD) may occasionally be useful. **Midodrine** may help as with orthostatic hypotension below.

It is worth correlating symptoms of collapse with data from an ILR as sometimes there may be associated inappropriate sinus tachycardia where **ivabradine** may be helpful.

Management of orthostatic hypotension includes education and the maintenance of adequate fluid and salt intake. In patients without underlying hypertension, 2–3 litres of fluid and 10 g of salt per day is recommended to expand extracellular volume. In patients with drug induced autonomic failure, removal of the offending agent, when possible, is recommended. **Midodrine** (2.5 - 10 mg TDS – non formulary and not licensed) and **fludrocortisone** (0.1 – 0.2 mg per day) may be helpful. Although trial data is lacking, pacing is indicated in carotid sinus hypersensitivity.

Management of cardiac syncope depends on the specific cause. The recommended treatment is dictated by the risk of syncope recurrence, risk of cardiac arrest and efficacy of the treatment. In general, pacemakers are recommended for symptomatic sinus node dysfunction, significant AV nodal disease (Mobitz II and complete heart block) or in patients with syncope with bundle branch block (BBB) and significant conduction system abnormality at electrophysiology study. Medical therapy (antiarrhythmic medications and AV nodal blockers) may be effective to reduce the risk of syncope due to atrial fibrillation with rapid ventricular response or for supraventricular tachycardia or outflow tract VT that is refractory to ablation. ICDs are recommended in patients with documented VT and structural heart disease, previous myocardial infarction or known channelopathies.
HEART FAILURE

A number of patients are admitted every week across UHL with a diagnosis of heart failure. Most will have a prior history of ischaemic heart disease. Other predisposing conditions need to be considered including valvular heart disease, atrial fibrillation, hypertension, diabetes, significant COPD and prior pulmonary thromboembolic disease. A small number will be new presentations as a consequence of cardiomyopathy. Some will be post-viral, but post-partum cardiomyopathy and alcohol abuse also need to be considered. A family history should include questions of premature or sudden death. Endocarditis needs to be considered. Treatment, whenever possible, should also be aimed at the underlying disease (if identifiable).

About 50% of patients will have systolic heart failure or heart failure with reduced ejection fraction (HFrEF). Many patients with clinical features of heart failure however have echocardiograms that suggest just mild impairment or even normal systolic function. There is increasing recognition that such patients, called HFnEF (heart failure normal ejection fraction), have a very similar clinical course and outcome as patients with LV systolic dysfunction. More recently there has been a shift to rename this condition HFpEF (heart failure with preserved ejection fraction). Patients with HFpEF are often more elderly, overweight, diabetic and have hypertension and atrial fibrillation. It is important to consider and exclude other causes such as coronary artery disease, pulmonary disease, anaemia etc. It is hypothesised that the physiology behind HFpEF relates to impaired filling or diastolic dysfunction. Treatment is very similar to standard heart failure patients, with diuretics etc but there is little evidence for the use of ACEI and β-blockers although one recent study suggests aldosterone antagonists may have some benefit. Nonetheless these patients have mortality similar to patients with left ventricular dysfunction and are equally disabled.

Most patients with systolic heart failure will have underlying coronary artery disease, but a fair proportion will have a non-ischaemic or dilated cardiomyopathy (DCM).

Patients who are admitted with a diagnosis of heart failure have a high mortality, both as inpatients (up to 10%) and following discharge (up to 50% in the following 12 months). Patients who have severe fluid overload, very high NT-proBNP levels, severe renal impairment, advanced age, multi-morbidity and frequent admissions with heart failure have an especially grave prognosis.

Comprehensive updated guidelines are available from the ACCF/AHA 2013 and ESC 2016.

INVESTIGATIONS

ECG

Q waves may suggest previous MI; LVH may suggest aortic stenosis, hypertension or diastolic overload; RV dominance and RAD may suggest chronic lung disease.

Routine blood tests

Renal function should be assessed to give clues as to previous hypertension, effect of medication and baseline. Allows exclusion of renal failure as a cause for oedema. Liver function tests may suggest hepatic congestion. A blood count excludes anaemia. Glucose may unmask undiagnosed diabetes. Thyroid function excludes thyroid dysfunction as the primary diagnosis. Check if on amiodarone therapy, or
therapy planned. Uric acid will assess possible susceptibility to gout from diuretic use.

Serum ferritin and transferrin should be taken in younger patients to exclude haemochromatosis. A careful family history (see later) is important to identify familial disease and genetic testing should be seriously considered. All patients with heart failure should be screened for iron deficiency and treated and investigated if iron deficient.

Brain natriuretic peptide (NT-proBNP) has an increasingly important role to play in the identification of patients with LV dysfunction. Levels less than 100 ng/L essentially rule out acute heart failure. Generally speaking however, NT-proBNP should be measured only where there is doubt about the diagnosis. A level above the normal range does not equate to a diagnosis of “heart failure” as any stimulus which causes increased cardiac chamber stress can elevate these peptides. Thus NT-proBNP may be elevated in atrial fibrillation, or RV strain (such as acute PE or cor pulmonale). Biomarkers are less reliable in HFpEF, and can be normal.

Renal impairment is very common in patients with CCF and it is important to react to results in a measured fashion. It is crucial to look at trends and whether renal function has changed as a consequence of alterations in medication. Drugs like spironolactone can cause deterioration and drugs like amiloride should be used with caution (and be aware of the amiloride content in co-amilofruse – Frumil).

Stopping ACEI because of renal impairment is a common reaction and should be done with caution in patients who have been established on them for a long time. Temporary discontinuation is reasonable in the acute phase if there has been a rise in creatinine of 30% or potassium rises above 6 mmol/L - but they should be reintroduced as soon as possible if renovascular disease is not suspected. In patients admitted with exacerbations of heart failure, diuretic doses are often reduced because of renal impairment and patients are subsequently discharged on lower doses than on admission. This is likely to result in readmission and careful comparison of admission and discharge doses is necessary. If a patient is congested more diuretics are required not less.

The Chest X-Ray

Usually cardiomegaly; May have pleural effusions; may be interstitial fluid, upper lobe blood diversion and Kerley b lines. May show enlarged left atrium in mitral stenosis. If heart size normal, consider diastolic dysfunction or pericardial disease. May reveal pericardial calcification.

Echocardiography

THE KEY INVESTIGATION. It will confirm whether the diagnosis is correct. Possible findings: dilated poorly contracting left ventricle (systolic dysfunction); stiff, poorly relaxing, often small diameter left ventricle (diastolic dysfunction); valvular heart disease; atrial myxoma; pericardial disease. DO NOT request if performed in the previous 12 months and where there is no clinical suggestion of change, or if the result will not result in a change of management.

CMR

Not mandatory in all patients but is a valuable non-invasive method of imaging that can elaborate on the cause of heart failure. Expensive and time consuming, this
investigation can only be requested by consultants. Useful in patients with coronary disease for viability assessment as revascularisation may improve systolic function.

Coronary Angiography

A proportion of patients, especially those with systolic failure, will have heart failure as a consequence of coronary artery disease. Combined with viability studies (CMR, stress echo) this investigation will identify whether patients may have the option of revascularisation therapy.

Considerations in the diagnosis of HFpEF

The diagnosis of HFpEF can be challenging. The following may be insufficient to rule in or out HFpEF:

- Diastolic dysfunction
- Signs of elevated filling pressures
- Elevated RV pressures

Biomarkers such as NT-proBNP may be normal. The H₂FPEF score is a tool that can help in predicting the likelihood of HFpEF in patients with dyspnoea:

<table>
<thead>
<tr>
<th>Clinical Variable</th>
<th>Values</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>Heavy Body mass index > 30 kg/m²</td>
<td>2</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>2 or more antihypertensive medicines</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>Atrial Fibrillation Paroxysmal or Persistent</td>
<td>3</td>
</tr>
<tr>
<td>P</td>
<td>Pulmonary Hypertension Doppler Echocardiographic estimated Pulmonary Artery Systolic Pressure > 35 mmHg</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Elder Age > 60 years</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>Filling Pressure Doppler Echocardiographic E/e’ > 9</td>
<td>1</td>
</tr>
</tbody>
</table>

H₂FPEF score

Sum (0-9)

<table>
<thead>
<tr>
<th>Total Points</th>
<th>Probability of HFpEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>7</td>
<td>0.9</td>
</tr>
<tr>
<td>8</td>
<td>0.95</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
MANAGEMENT

Lifestyle modification Smoking cessation and restriction of alcohol consumption is recommended. Salt restriction is advisable. Fluid restriction may be indicated especially in the presence of hyponatraemia. Daily weight monitoring can help identify fluid accumulation earlier.

Diuretics First line. The most effective symptomatic treatment. Loop diuretics are the most effective. Furosemide 40 - 500 mg daily in divided doses. May be given IV, especially when patients are very fluid overloaded (remember ampoules of furosemide are 50 mg so give 50 mg or multiples thereof rather than 40 mg as per oral dosing). Big doses may be needed in renal impairment. Better effect is occasionally seen with prolonged infusions (i.e. 250 mg over several hours). Bumetanide may be better absorbed orally, and may have advantages when patients are markedly oedematous. Torasemide (20 - 60 mg daily in divided doses) is also better absorbed.

The initial dose of diuretics given to a patient who is fluid overloaded depends on whether they are already on diuretic therapy and what their baseline renal function is. It is customary to give a larger dose than what the patient is currently taking – a suggested regime is 1·5 to 2·5 times the prescribed dose administered intravenously (for example if patient is on Furosemide 40mg PO, start with Furosemide 100mg IV). The patient should be carefully monitored for the response to treatment and doses should be adjusted accordingly. Patients should have urine input and output monitoring as well as daily weighing to assess response to treatment. A pragmatic approach should be adopted with respect to the impact on renal function (both in the acute and chronic situation). A trade-off is reasonable in terms of achieving appropriate fluid offloading and accepting a reduction in renal function – as long as renal function does not continue to decline or when function is so severely impaired that the need for dialysis is a possibility.

Thiazide diuretics are often useful when added to a loop. Only small doses may produce a profound diuresis. Bendroflumethiazide (2·5 mg OD) may be employed. More dramatic diuresis may be seen with metolazone (2·5 - 5 mg daily). Very careful monitoring of renal function is required in this situation, and extra special caution should be applied in outpatients. Potassium depletion may occur with long-term diuretic use, although this may be counterbalanced by ACEI. If hypokalaemia persists consider the introduction of amiloride 5 mg OD orally with careful monitoring of the U&Es.

For the most part, spironolactone 25 mg OD should be considered in preference to amiloride in all patients with class III or IV heart failure if they are already established on an ACEI. Care should be taken if the creatinine is greater than 200 µmol/l. Careful monitoring of the U&Es after introduction is essential. Monitoring of the patient’s weight and urine output is mandatory. There is debate in HFpEF whether spironolactone has definite benefit in terms of mortality, but there is good evidence of reduced morbidity and hospitalisations and it should be seriously considered.

Angiotensin Converting Enzyme Inhibitors are particularly useful if the patient is also hypertensive. ACEI improve the symptoms and signs of all grades of heart failure (even if the patient is asymptomatic). They improve exercise tolerance, slow disease progression and improve survival. If an ACEI is given to 1000 CHF patients
for 1 year it would save 17 premature deaths, save 67 hospitalisations for CHF, prevent 13 episodes of unstable angina or myocardial infarction (compare with β-blocker use after acute MI which would save 17 lives only per 1000 patients treated). Patients with diabetes are particularly likely to benefit.

Only larger doses have shown to be effective in the clinical trials, and there is evidence to suggest that patients should be maintained on the highest dose of ACEI they can tolerate.

Patients should have careful monitoring of renal function after starting an ACEI and shortly after each dose titration - it is good practice to give patients a U&Es request form with instructions to arrange a blood test via their GP within a week of discharge. A rise in creatinine of up to 25% above baseline, or up to 200 mmol/l, whichever is the smaller, is usually acceptable. Seek senior advice regarding greater rises in creatinine, which may require discontinuation of the ACEI and further renal investigation as appropriate.

Angiotensin 2 Receptor Antagonists (ARBs) There is good evidence for valsartan and candesartan in this setting. Evidence for losartan was disappointing, but may have been due to lower doses than required being employed in the trials. The dose should be increased to the maximum recommended by titrating up over a few weeks according to tolerability.

Candesartan may be helpful in treating hypertension in patients with HFpEF. In The CHARM-Preserved Study there was no reduction in mortality but a reduction in hospitalisations.

Angiotensin Receptor Neprilysin Inhibitor (ARNI) A recent trial, PARADIGM HF, compared the ACEI enalapril 10mg BD to the first-in-class ARNI LCZ696 in patients with stable chronic heart failure. The trial was terminated prematurely on the advice of the data safety monitoring committee, in light of overwhelming evidence of superiority of LCZ696; this agent was associated with a 20% relative risk reduction compared to enalapril in the primary endpoint of the combination of cardiovascular death or heart failure hospitalisation. Each component of the primary endpoint was reduced to a similar extent, and all-cause mortality was reduced by 16%. LCZ696 was also better tolerated than enalapril and in spite of lowering BP slightly more than enalapril, LCZ696 did not show any greater risk of adverse effects on renal function. In 2016 LCZ696 became available under the name of sacubitril/valsartan.

NICE guidance (TA388) states sacubitril/valsartan is recommended as an option for treating symptomatic chronic heart failure with reduced ejection fraction, only in people:

- With New York Heart Association (NYHA) class II to IV symptoms and
- With a left ventricular ejection fraction of 35% or less and
- Who are already taking a stable dose of ACEI or ARBs.

It should not be prescribed with any other ACEI or ARB or in patients with a history of angioedema associated with previous use of these drugs. ACEI should be discontinued 2 days prior to initiation.

Sacubitril/valsartan is available at 24 mg/26 mg, 49 mg/51 mg, and 97 mg/103 mg doses, each administered BD. The choice of initiation dose will be guided by clinical variables such as blood pressure, renal function and the patient’s dose of ACEI or
ARB prior to switching. In keeping with NICE guidelines and local recommendations, the switch to sacubitril/valsartan should be made under the supervision of the UHL heart failure team.

Beta Blockers These improve survival after myocardial infarction, especially in patients with evidence of left ventricular dysfunction. In patients with dilated cardiomyopathy, cautious administration of bisoprolol improved QOL and survival. Carvedilol can also be used in this setting. There is a 5 - 20% risk of worsening heart failure. **β-blockers** can also be extremely useful in diastolic dysfunction. They may help if used cautiously in patients with co-existing angina.

β-blockers should be used with great caution in HFrEF.

The introduction of **β-blockers** should be cautious and avoided in the context of heart block and shock. In particular, the subsequent dose titration must be performed slowly - in other words: **START LOW AND GO SLOW**. It is usually safe to initiate **β-blockers** if the patient’s systolic BP is > 100 mmHg with a resting heart rate > 60 bpm (and no AV block) and no significant postural drop (and they are not dizzy). It is usually safe to titrate the dose subsequently if the systolic BP is > 90 mmHg with a resting heart rate > 50 bpm and no significant postural drop (and they are not dizzy). As with ACEI, it is important to aim for the optimal dose of **β-blocker** in order to maximise the mortality benefits. The titration steps are:

Carvedilol: Start with 3·125 mg BD orally (with food) for 2 weeks, increase to 6·25 mg BD for 2 weeks, increase to 12·5 mg BD for 2 weeks, increase to 25 mg BD thereafter*
*Further increase in carvedilol dose to 50 mg BD after a further 2 weeks is indicated if the patient weighs more than 85kg.

Bisoprolol: Start with 1·25 mg OD orally for 1 week, increase to 2·5 mg OD for 1 week, increase to 3·75 mg OD for 1 week, increase to 5 mg OD for 4 weeks, increase to 7·5 mg OD for 4 weeks, increase to 10 mg OD thereafter.

Dapagliflozin The DAPA-HF trial showed that dapagliflozin reduced cardiovascular death and heart failure events in patients with HFrEF. NICE (TA679) recommends dapagliflozin (10 mg OD) in those with symptomatic HFrEF as an add-on to optimised standard care (ACE, ARBs or sacubitril valsartan etc). Dose should be halved in cases of severe hepatic impairment. It should not be used in patients with type 1 diabetes.

Ivabradine Ivabradine is beneficial in heart failure in patients who either cannot tolerate β-blockers, or in whom the resting heart rate is higher than 75 despite β-blockers. Patients must be in sinus rhythm to benefit. Should be avoided with diltiazem or verapamil. Ivabradine is particularly useful when blood pressure is low because it has no impact on the blood pressure.

Nitrates Nitrates reduce preload; reduce pulmonary oedema and reduce ventricular size. There is a beneficial effect of using IV nitrates in acute heart failure if there is underlying ischaemia, hypertension or regurgitant aortic and mitral valve disease. In chronic heart failure they can be especially useful for relief of orthopnoea and exertional dyspnoea. Caution should be applied with aortic and mitral stenosis, HOCM, HFpEF and pericardial constriction.

Other Vasodilators Hydralazine and isosorbide mononitrate in combination appears to have a beneficial effect on survival, this is particularly true in patients of
African or Caribbean origin. They should generally be used if patients cannot take **ACEI** or **ARBs**. Occasionally the addition of these drugs to **ACEI** or **ARBs** in patients with resistant CCF may be helpful.

Digoxin may be beneficial in heart failure, even in the context of sinus rhythm. It can be used as an adjunct to diuretics and **ACEI**. It is a weak inotrope and arterial vasodilator. It has electrophysiological effects, and is especially useful if patient in atrial fibrillation). There is some evidence that using lower dose **digoxin** (maintaining serum levels between 0.5 - 1.0 µg/L) not only reduces hospitalisations but mortality too in heart failure and sinus rhythm. **Digoxin** levels should be carefully monitored in patients with CKD and in particular with hyperkalaemia.

Calcium channel blockers **Amlodipine** should be considered for the treatment of co-morbid hypertension and/or angina in patients with heart failure, but **verapamil, diltiazem** or **short-acting dihydropyridine agents** should be avoided.

Anticoagulation

Warfarin or one of the **DOACs** should be employed in atrial fibrillation (established and paroxysmal). It should also be considered if there is severe CHF or marked cardiomegaly, and if there is a known ventricular aneurysm. Consider if there is a suspicion of pulmonary thromboembolic disease.

Patients with severe peripheral oedema often have poor mobility and are at risk of DVT and PE. In the absence of contraindications, it is advisable to use a prophylactic dose of **LMWH** until the patient is ambulant.

Aspirin 75 mg OD should be used in patients with vascular disease and heart failure.

Amiodarone This should be considered in patients with evidence of symptomatic ventricular or supraventricular arrhythmias.

Opiates Very useful in terminal CHF for control of pain and distress, but care should be taken to avoid excessive sedation or respiratory depression.

Inotropes **Dobutamine:** brief infusions may confer symptomatic benefit for some time. Drawback is the risk of arrhythmias, increased myocardial oxygen consumption and ‘tolerance’. **Dopamine:** in renal dose (2.5 µg/kg/min) can speed up diuresis and reduce length of in-patient stay.

Patiromer (**Veltassa**) is occasionally employed by the heart failure team in patients with persistent hyperkalaemia (> 6 mmol/l) in order to allow an **ACEI** or **ARB** to be continued.

Sodium zirconium cyclosilicate (**Lokelma**) is also occasionally used in exactly the same setting as **Veltassa**.

Iron Therapy The ESC Heart Failure Guidelines recommend considering treatment with IV **ferric carboxymaltose** (**Ferinject®**) in symptomatic iron deficient patients in order to alleviate symptoms, and improve exercise capacity. Iron deficiency is very common in HFrEF and is defined as a serum ferritin < 100 µg/L or ferritin 100 - 299 µg/L and transferrin saturation < 20%. It is common irrespective of haemoglobin, sex, ethnicity and even ejection fraction. IV iron should **not** be given if Hb > 15 g/dL.
COMPLEX DEVICE THERAPY

Inpatient device requests can be made under ‘Service Referrals’ on ICE and selecting ‘Cath Lab’ followed by ‘Devices’.

Patients with impaired left ventricular function may benefit from either cardiac resynchronisation therapy (CRT-biventricular pacing) or an implantable cardioverter defibrillator (ICD). Cardiac resynchronisation therapy aims to improve the efficacy of cardiac contraction by pacing both the left and right ventricles. Around 70% of appropriately selected patients respond to CRT and it improves symptoms, reduces heart failure hospitalisation and reduces mortality. Those most likely to benefit are patients with very poor LV function (LVEF < 35%), sinus rhythm and prolongation of the QRS on ECG with left bundle branch block (especially if QRS > 130 ms). Echocardiography criteria are no longer required for CRT but may be helpful where the ECG suggests uncertain benefit: aortic pre-ejection delay > 140 ms, interventricular mechanical delay > 40 ms, delayed activation of posterolateral wall (d1 > d2), rocking of the apex.

CRT can simply have a pacing function (CRT-P) or be combined with a defibrillator (CRT-D). NICE have recently updated their recommendations for CRT (TA 314) see the table on the next page.

ICDs do not improve symptoms, their purpose is purely to prevent sudden cardiac death by detecting and cardioverting VT/VF. ICDs achieve this either using anti-tachycardia pacing known as ATP (asymptomatic) or by delivering an electric shock (unpleasant for the patient if conscious during the arrhythmia). ICDs are used either for secondary prevention in survivors of sudden cardiac arrest or for primary prevention. Primary prevention ICD risk stratification in most conditions revolves around left ventricular ejection fraction (LVEF). LVEF is limited in that most patients dying of sudden cardiac death have relatively preserved LVEF but it is the least worst marker of sudden cardiac death risk that we have at present. NICE have recently updated their recommendations for ICDs (TA 314) to include patients with non-ischaemic cardiomyopathy. The following table (page 147) is self-explanatory in the main, and patients meeting the specified criteria should be considered for an ICD. NICE states that patients with LVEF <35% and QRS interval <120ms are considered for ICD ‘if there is a high risk of sudden cardiac death’. NICE does not further define ‘high risk of sudden cardiac death’ and such patients need assessment by a device specialist. ICD prescription is a balance between risk and benefit; not all patients meeting the NICE criteria are appropriate for ICD implant. The criteria are

<table>
<thead>
<tr>
<th>Haemoglobin</th>
<th>mmol/L</th>
<th><35 kg</th>
<th>35 kg to <70 kg</th>
<th>≥70 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td><8.2</td>
<td>500 mg</td>
<td>1500 mg</td>
<td>2000 mg</td>
</tr>
<tr>
<td>10 to <14</td>
<td>6.2 to <8.7</td>
<td>500 mg</td>
<td>1000 mg</td>
<td>1500 mg</td>
</tr>
<tr>
<td>≥14 to 15</td>
<td>≥8.7 to 9.3</td>
<td>500 mg</td>
<td>500 mg</td>
<td>500 mg</td>
</tr>
</tbody>
</table>
simple to follow but hide nuances in device benefit. It is helpful, when referring to a
device specialist, to make clear that the referral is for assessment and consideration
of device implant.

**Treatment options with ICD or CRT for people with heart failure who have
LVEF of 35% or less (according to NYHA class, QRS duration and presence of
LBBB (from NICE TA 314).**

<table>
<thead>
<tr>
<th>NYHA class</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td><120 milliseconds</td>
<td>ICD if there is a high risk of sudden cardiac death</td>
</tr>
<tr>
<td>120–149 milliseconds without LBBB</td>
<td>ICD</td>
</tr>
<tr>
<td>120–149 milliseconds with LBBB</td>
<td>ICD</td>
</tr>
<tr>
<td>≥150 milliseconds with or without LBBB</td>
<td>CRT-D</td>
</tr>
</tbody>
</table>

LBBB, left bundle branch block; NYHA, New York Heart Association

Audit of the UHL ICD service has found that our patients have around a 10% annual rate of appropriate ICD therapy. ICD have the potential for significant psychological and physical morbidity. In particular there is a risk of inappropriate shocks. Patients can present with ventricular tachycardia storm (3 or more episodes of ventricular tachycardia within 24 hours) which leads to multiple unpleasant shocks (see page 121). Patients can also have lead fractures or fast atrial fibrillation causing multiple (occasionally 100s) of inappropriate shocks. If a patient presents with multiple / on-going ICD therapies not associated with loss of consciousness, contact the on call cardiac technician for immediate ICD interrogation and reprogramming. As a temporising measure, consider placing a magnet over the ICD (found on defibrillator trolleys) - this will inactivate the device and provide relief from multiple ICD therapies. Placing a magnet over the ICD deactivates therapies and leaves the patient at risk of sudden cardiac death. It should only be done with cardiac monitoring in a high dependency setting such as CCU. There are important implications for driving with an ICD, the DVLA rules change not infrequently; this is covered in the section on cardiovascular disease and driving on page 204.

Heart Failure Nurse Specialists

There are specialist heart failure nurses on both the wards and in the community. They should be referred ALL relevant patients. If patients are already under the care
of a heart failure nurse, the nurse must be informed of their impending discharge. There is also an inpatient heart failure team led by Dr Ian Loke, Dr Will Nicolson and ANP Louise Clayton (07961729241) to whom patients with more difficult heart failure can be referred. There is a contact email: heartfailure@uhl-tr.nhs.uk. Patients who require specialist heart failure management are cared for on the specialist heart failure ward.

Sometimes patients with heart failure are very sick and do not respond to conventional medical therapy. It may be that a palliative care focus is more appropriate. These patients should be referred urgently to the heart failure team or to the palliative care team. Familiarise yourself with the AMBER Care Bundle for patients who are not expected to survive for more than 1 - 2 months. Consider completing and discussing a ReSPECT form.
DILATED CARDIOMYOPATHY

Definition
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterised by left ventricular or biventricular dilation and impaired contraction that is not explained by abnormal loading conditions (for example, hypertension and valvular heart disease) or coronary artery disease.

Mild or intermediate clinical phenotypes can be identified in mutation carriers, family members of affected patients or patients with acquired forms of DCM. Thus, the clinical spectrum of DCM includes patients with isolated ventricular dilatation, hypokinetic non-dilated cardiomyopathy or predominantly arrhythmic forms of the disease. The heterogeneous aetiology and clinical presentation of DCM make a correct and timely diagnosis challenging.

Epidemiology
The exact prevalence of DCM is unknown, but DCM comprises the most common subtype of cardiomyopathy worldwide. The prevalence ranges from 14/100,000 population in Japan to 36/100,000 in the USA.

Aetiology
Mutations in several genes can cause DCM, including genes encoding structural components of the sarcomere and desmosome. The true incidence of familial (genetic) DCM is unknown but it may account for 20-48% of the apparently idiopathic cases. More than 50 genes have been reported in the aetiology of DCM and follow a predominantly autosomal dominant inheritance pattern, although other modes of inheritance are recognised.

Non-genetic forms of DCM can result from different aetiologies, including inflammation of the myocardium due to an infection (mostly viral); exposure to drugs, toxins or allergens; and systemic endocrine or autoimmune diseases.

<table>
<thead>
<tr>
<th>Genetic</th>
<th>Non-Genetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titin mutations a</td>
<td>Toxins (e.g. alcohol)</td>
</tr>
<tr>
<td>Lamin A/C mutations a</td>
<td>Chemotherapy (e.g. anthracycline use)</td>
</tr>
<tr>
<td>Myosin 7 (MYH 7) mutations a</td>
<td>Infections (e.g. viral myocarditis, HIV)</td>
</tr>
<tr>
<td>Muscular dystrophies (DMD/BMD) b,c</td>
<td>Peripartum</td>
</tr>
<tr>
<td>Myotonic dystrophy c</td>
<td>Auto-immune (e.g. non-infectious myocarditis)</td>
</tr>
<tr>
<td>Mitochondrial diseases d</td>
<td></td>
</tr>
</tbody>
</table>

a: Most common genetic causes (list of genetic causes not exhaustive); b: X-linked inheritance; c: common in paediatric patients; d: mitochondrial inheritance

Clinical features
The clinical presentation of DCM is generally unrelated to the underlying aetiology and ranges from dyspnoea, swollen legs, ankles and stomach, fatigue, reduced
exercise tolerance, and chest pain to arrhythmia, acute decompensation or cardiogenic shock. The signs and symptoms of DCM mainly relate to the degree of LV or biventricular systolic dysfunction leading to pump failure. Heart failure signs and symptoms may be fulminant, acute, subacute or chronic.

Investigations

A systematic approach is required that includes personal and family history, physical examination, ECG, cardiac imaging, biochemical testing and viral serology. Further investigations including coronary angiography, cardiac biopsy or genetic testing should be guided by the initial findings.

Diagnosis

The aim of the diagnostic work-up are to confirm the diagnosis and the cause of DCM, identify patients at risk of arrhythmia and organise appropriate familial evaluation. A typical work-up is summarised as follows:

- A 3- to 4-generation family pedigree is constructed. The age at diagnosis, mode of genetic transmission and history of premature sudden cardiac death are identified.
- Specific signs of a multisystem disease should be explored. Examples include: learning difficulties and muscle weakness characteristic of dystrophin related disorders, myotonia and visual impairment associated with myotonic dystrophy, and sensory-neural deafness indicative of mitochondrial disease.
- Standard serological criteria for the diagnosis of myocarditis are used. A raised creatinine kinase (CK) level usually suggests dystrophin related disorders of a laminopathy. Lactic acidosis, myoglobinuria and leukocytopenia can be found in mitochondrial disease.
- Serum brain natriuretic peptide (NT-proBNP) are increased and are a useful screening method of identifying breathless patients who may have heart failure.
- The 12-lead ECG in patients with DCM may be remarkably normal, but abnormalities ranging from isolated T wave changes and left bundle branch block to prolongation of atrioventricular conduction can occur. Sinus tachycardia is common. Holter monitoring can demonstrate non-sustained ventricular arrhythmias.
- Echocardiography remains the first line imaging modality and facilitates the diagnosis in the majority of DCM cases. Different degrees of systolic dysfunction and ventricular dilatation can be identified. Functional mitral and tricuspid valve regurgitation due to ventricular dilatation, and pericardial effusions in patients with myocarditis may be noted. The presence of mural thrombi needs to be excluded, especially in patients with severe ventricular dysfunction. Echocardiography is also used for surveillance of patients identified with DCM including assessment of reverse remodelling following treatment initiation.
- Cardiac MRI is extensively used and represents the best method for morphological and functional evaluation and characterisation of myocardial tissue in patients with DCM. Cardiac MRI can identify myocardial scar, detect infiltrative diseases such as amyloid or sarcoid and iron overload in haemochromatosis.
- Genetic testing should be performed in the affected individuals especially when the pedigree suggests a familial picture. Where there is a higher clinical suspicion for a specific mutation, targeted genetic testing is performed (e.g. premature conduction disease in DCM patients with laminopathy).
- Cardiac catheterisation or CT coronary angiography is used to exclude an ischaemic cause.
- Cardiac biopsy can be performed when there is a suspicion of infiltrative or storage disease, or evidence of recurrent inflammatory myocarditis.

Treatments
- Treat underlying cause where appropriate (e.g. alcohol abstinence).
- As DCM eventually leads to impaired contractility, standard approaches to prevent or treat heart failure are the first-line treatment for patients with DCM (see heart failure section of handbook for details on recommended pharmacological therapies).
- Disease specific treatments (e.g. steroid therapy in sarcoid, venesection in haemochromatosis).
- Standard indications for cardiac resynchronisation therapy (CRT) apply (i.e. LVEF <35%, NYHA 2 or 3, on optimal medical therapy, left bundle branch block).
- Primary prevention ICD (with or without CRT) can be considered in DCM patients with LVEF <35%, although it is well recognised that a single parameter does not recapitulate the complexity of the disease. A more personalised approach should be incorporated into the risk stratification process to include genetic causes of DCM associated with arrhythmic features (e.g. Lamin A/C or FLNC) and assessment of fibrosis burden during cardiac MRI. A discussion of these cases at a devices/EP MDT is recommended.
- In patients with advanced disease, pharmacological and device therapy may be insufficient to maintain adequate cardiac function and surgery might be required. The two major options are heart transplantation and implantation of long-term mechanical circulatory support, either as a temporary measure while awaiting transplantation or permanently. Other surgical approaches include correction of mitral valve regurgitation.

Follow-up and family screening
Patients with DCM will require follow-up and repeat assessment of risk stratification and assessment of reverse remodelling. The frequency will depend on the individual case. Family members of DCM patients should be offered genetic testing when a pathogenic mutation is identified in the index case. Where a mutation is not identified (or genetic testing is not performed) and a familial component is suspected, first degree relatives should be offered clinical screening with ECG and echocardiography.

HYPERTROPHIC CARDIOMYOPATHY
Hypertrophic cardiomyopathy is one of the commonest inherited cardiac conditions encountered in clinical practice with an estimated prevalence if 1 in 500.

Hypertrophic cardiomyopathy (HCM) is defined by the presence of increased left ventricular (LV) wall thickness that is not solely explained by abnormal loading conditions. In an adult, this represents a wall thickness ≥ 15 mm in one or more LV myocardial segments (or ≥ 13 mm in a first degree relative of someone with HCM) measured by any imaging technique.

Up to 60% of the cases are due to mutations in genes that encode sarcomeric proteins, Five to ten per cent of the cases are due to other genetic disorders.
including inherited metabolic and neuromuscular diseases (eg Friedreich’s ataxia, amyloidosis and mitochondrial diseases).

The degree and distribution of hypertrophy is very variable (eg septal, apical, mid-cavity). Depending upon the severity and extent of the hypertrophy, patients with HCM can develop LV outflow tract obstruction (LVOTO), diastolic dysfunction, myocardial ischaemia, mitral regurgitation, atrial fibrillation, abnormal vascular responses and, in 5% of patients, progression to a ‘burnt-out’ phase characterised by systolic impairment.

In the classic form of obstructive HCM, the obstruction occurs at the level of the LVOT by a combination of septal hypertrophy and systolic anterior movement of the anterior mitral valve (Venturi effect due to the high velocities in the LVOT). In other morphologic variants of HCM, obstruction at the mid-cavity can also occur.

Clinical presentation

A large proportion of patients with HCM will be asymptomatic, with suspicion for underlying disease being raised incidentally through an abnormality on the 12-lead ECG performed for another indication. However, patients with HCM can present with exertional chest pain and dyspnoea, palpitations or syncope. On occasion, sudden cardiac death can be the first manifestation of the disease especially in younger patients.

Physical examination is often normal. However, a systolic murmur due to LVOTO and/or mitral regurgitation may be audible. Additionally, pulse assessment is important to exclude atrial fibrillation.

Investigations

ECG

The 12-lead ECG is abnormal in approximately 85-90% of HCM patients. It varies from T wave inversion (often preceded by Q waves and ST segment depression), overt left ventricular hypertrophy (LVH) and left atrial enlargement.

Echocardiography

Echocardiography is an invaluable tool in the diagnosis of HCM. Two-dimensional, M-Mode and doppler echocardiography allow for composite assessment of the morphology and structural abnormalities. Classically, there is asymmetrical septal hypertrophy with systolic anterior motion of the mitral valve leaflet, LVOTO and secondary mitral regurgitation. Alternative patterns include apical, free wall or concentric LVH. LVOTO is defined as a peak instantaneous Doppler LVOT gradient of >30 mmHg, but the threshold for invasive treatment is usually >50 mmHg. Exercise stress echocardiography is recommended in symptomatic patients with an LVOT gradient < 50 mmHg at rest or during physiological provocation such as the Valsalva manoeuvre. Left atrial size is often increased due to mitral regurgitation, LVOTO and diastolic dysfunction.

Cardiac MRI (CMR)

Although echocardiography is an excellent imaging technique to diagnose HCM and should be considered first line, CMR is the gold standard due to its ability to provide highly accurate visualisation of extent and distribution of hypertrophy as well as tissue characterisation (in relation to assessment of fibrosis through the technique of late gadolinium enhancement). CMR is also useful in the differential diagnosis
between HCM and other conditions characterised by LVH (e.g. athletes’ heart, hypertensive heart disease, Fabry disease etc).

Ambulatory ECG

This is an important component of the outpatient evaluation and risk stratification of HCM patients. Demonstration of repetitive arrhythmias such as non-sustained ventricular tachycardia is a prognostic marker of sudden cardiac death. Additionally, demonstration of atrial fibrillation should prompt initiation of anti-coagulation.

Treatment

Treatment strategies in HCM encompass symptom management, treatment of heart failure, management of arrhythmia, sudden cardiac death prevention and therapies (invasive and non-invasive) for LVOTO.

<table>
<thead>
<tr>
<th>Complication of HCM</th>
<th>Summary of therapies available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fibrillation</td>
<td>Offer anticoagulation irrespective of the CHA₂DS₂-VASc score as patients with HCM and AF have a high incidence of stroke. Consider early cardioversion as loss of atrial transportation (i.e. atrial kick) is often poorly tolerated. Amiodarone can be considered to prevent atrial fibrillation recurrences and catheter ablation is possible in resistant cases. Where sinus rhythm cannot be maintained, rate control with β-blockers, or calcium channel antagonists should be initiated.</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>Commonly due to diastolic dysfunction. Low-dose loop or thiazide diuretics can be considered with caution to improve breathlessness but remember that avoiding hypovolaemia is very important especially in presence of LVOTO which should be concomitantly treated. For patients with heart failure with reduced ejection fraction, standard guidelines for treatment apply.</td>
</tr>
<tr>
<td>Sudden cardiac death (SCD)</td>
<td>All patients should be assessed for risk of SCD according to the ESC HCM Risk-SCD calculator. https://qxmd.com/calculate/calculator_303/hcm-risk-scd The variables needed to assess the risk are: age, family history of SCD, unexplained syncope, LV outflow gradient, maximum LV wall thickness, left atrial diameter and non-sustained ventricular tachycardia. The general advice is that:</td>
</tr>
<tr>
<td></td>
<td>• Implantable cardioverter defibrillator (ICD) is not indicated if the 5-year risk is < 4%.</td>
</tr>
<tr>
<td></td>
<td>• ICD may be considered if 5-year risk is 4–6%.</td>
</tr>
<tr>
<td></td>
<td>• ICD should be considered if 5-year risk is > 6%.</td>
</tr>
</tbody>
</table>
| **LVOTO** | **General:**
General advice is to ensure adequate filling and avoid vasodilators such as nitrates and positive inotropic agents such as digoxin.

Pharmacological
Non-vasodilating β-blockers and calcium channel antagonists such as verapamil or diltiazem are used as first-line therapy to reduce symptomatic LVOTO.

Disopyramide (300-600mg/24hrs) can be used as an add-on to β-blockers or calcium channel antagonists particularly for symptomatic resting LVOTO; dose is titrated according to tolerance of anti-cholinergic adverse effects. Monitoring of QT interval is advised, with avoidance of other QT-prolonging agents (for example, amiodarone and sotalol).

Cardiac device therapy
The role of dual chamber pacing to reduce LVOTO by electrical asynchrony due to right ventricular pacing is less clear and is no longer recommended as a first line option. If device therapy is considered for another indication (e.g. concomitant conduction disease, or ICD indication), referral to an imaging specialist for echocardiography guided A-V delay optimisation can be considered post implant.

Invasive therapies
Patients who remain symptomatic with LVOTO >50 mmHg, NYHA class III–IV and/or recurrent exertional syncope despite maximum tolerated medical therapy should be considered for invasive treatment.

Surgical myomectomy is an effective strategy to reduce LVOTO. A rectangular trough is created from the basal septum below the aortic valve until beyond the point of the mitral leaflet-septal contact. At the same time realignment of the papillary muscle or mitral valve repair can also happen. Mortality rates are approximately 1-2%, while other major complications include development of ventricular septal defects and atrioventricular (AV) block.

Percutaneous alcohol septal ablation (ASA) is an alternative to myomectomy, particularly in patients deemed at high risk for surgery. A localised septal scar is created following selective injection of alcohol into a septal perforator artery. This relieves the LVOTO but potential issues with the papillary muscles or the mitral valve cannot be addressed. The mortality rate is similar to surgical myomectomy with the main complications being AV block (7–20%). Colleagues at Liverpool Heart and Chest provide a tertiary service (Dr Rob Cooper, Prof Rod Stables). |
Other considerations

Follow-up

In general, patients with HCM require lifelong follow-up to detect changes in symptoms, risk of adverse events, LVOTO, LV function and cardiac rhythm. The frequency of monitoring is determined by the severity of disease, age and symptoms. A clinical examination, including 12-lead ECG and TTE, should be performed every 1–2 years.

Genetic testing and family screening

Genetic testing can be considered to demonstrate a causative mutation in patients with the clinical phenotype of HCM, with a diagnostic yield of 60-70%. Such mutations affect the cardiac sarcomere and most commonly beta-myosin heavy chain and myosin-binding protein C. Currently, identification of causative mutation in HCM has limited impact on prognosis or therapy. When a pathogenic mutation is identified in an index patient, targeted genetic testing may be extended to first degree family members. HCM is usually an autosomal dominant disorder, thus the risk that an affected patient will transmit the disease is 50%.

Where a causative mutation is not identified in the index patient (or genetic testing is not performed), genetic testing should not be offered to family members and screening should focus on development of the phenotype. The frequency of clinical screening in the absence of a genetic diagnosis should be guided by the age of onset and severity of cardiomyopathy within the family (e.g. the occurrence of multiple and early sudden deaths) and active participation in competitive sport.

Individuals who have non-diagnostic clinical features consistent with early disease should be seen initially at intervals of 6–12 months and then less frequently if there is no progression. All relatives who complain of new cardiovascular symptoms should be re-evaluated promptly. Essentially screening is usually advocated every three years until 30 years old, except yearly during puberty.

Management of patients with HCM and screening of their family members is best performed in a combined cardio-genetic clinic. Please consider referring these individuals to Dr Harshil Dhutia, who runs the adult inherited cardiac disease service at Glenfield Hospital.

LEFT VENTRICULAR NON-COMPACTION CARDIOMYOPATHY

Left ventricular non-compaction (LVNC) is characterised by prominent LV trabeculae and deep inter trabecular recesses and is seen sometimes as an incidental finding on echo and MRI.

Clinical manifestations may include dyspnoea (60%), chest pain (15%), palpitations (18%), syncope (9%) or present with an abnormal ECG (commonly seen but non-specific abnormalities). Many patients are asymptomatic.

Patients are at risk of atrial and ventricular arrhythmias and symptomatic patients with documented arrhythmias or impaired systolic function should be advised against competitive sports. Holter monitoring is indicated as well as serial echo assessments. Genetic studies and clinical screening of family is recommended. Autosomal dominant inheritance is more common than recessive or X-linked.

Management is directed towards specific complications rather than anything specific for LVNC. Those with heart failure should be treated with standard heart failure
medications. Those with sustained VT or cardiac arrest survivors should be offered ICD therapy. Those who met symptom and EF criteria for an ICD should be considered for primary prevention ICD. Patients with atrial fibrillation who meet standard criteria for anticoagulation should be anticoagulated according to standard guidelines. Some propose anticoagulation in patients with reduced EF (< 40%) and AF regardless of the CHA2DS2-VASc score.

INFLTRATIVE CARDIOMYOPATHIES

Sarcoidosis About a third of patients with sarcoidosis have cardiac involvement. Supraventricular and ventricular arrhythmias are common and bundle branch block occurs in two thirds. A quarter will develop complete heart block and a similar number heart failure. It should be seriously considered in younger patients (< 55 years) presenting with heart block or heart failure. Similarly cardiac involvement should be looked for in those with known extracardiac sarcoidosis.

A 12 lead ECG and Holter monitoring is mandatory. An echocardiogram is also essential when suspecting cardiac involvement. CMR is extremely helpful as is PET scanning to assess disease activity. PET appears to be more sensitive than CMR, but CMR may have higher specificity.

Treatment is with prednisolone, starting with a dose of 60 mg/day and gradually reducing this dose to a maintenance level of 10 to 15 mg/day over one year. Glucocorticoid treatment should be continued for at least one to two years.

Amyloidosis Cardiac involvement in amyloidosis carries a poor prognosis, especially with light-chain (primary) amyloid, with average life expectancy of 6 months and only 6% surviving to three years. Rapidly progressive heart failure is a feature, with arrhythmias being common. In senile amyloid heart block is not uncommon. There is a high incidence of thromboembolism, especially but not only in the context of atrial fibrillation. Neuropathy is common in primary amyloid and can be manifested by hypotension. The echocardiogram can show subtle changes such as dilated atria, thickened heart valves or an appearance of myocardial speckling. CMR can be diagnostic. Serum or urine monoclonal paraprotein is suggestive of primary amyloid but not diagnostic. Endomyocardial biopsy can be helpful. Consider referral to the National Amyloidosis Unit at the Royal Free Hospital who will assess and recommend appropriate chemotherapy regimens. Patients with a restrictive cardiomyopathy have a very high NT-proBNP level (often over 1000 ng/L) despite an echocardiogram showing mild systolic dysfunction or normal function.

While loop diuretics are a mainstay of treatment of cardiac amyloidosis, β-blockers and ACEI may be harmful despite their efficacy in other types of systolic heart failure. Similarly, calcium channel blockers are contraindicated in amyloid cardiomyopathy.

Fabry disease An X-linked recessive lysosomal storage disorder characterised by deficiency of alpha-galactosidase A. Fabry cardiomyopathy has an incidence of 3 - 6% of males with unexplained LVH.

If suspected an assay for α-galactosidase is available. In women however, genetic testing is required.

Enzyme replacement therapy is beneficial.

Haemochromatosis One third of homozygotes have cardiac involvement. Untreated there is the development of progressive heart failure.
Diagnosis is confirmed with the finding of increased transferrin saturation (ratio of iron to transferrin) and increased levels of plasma transferrin. CMR and genetic testing should be considered.

Therapeutic phlebotomy is the first line of treatment in non-anaemic patients.

ISOLATED RIGHT HEART FAILURE

Causes of isolated right heart failure include severe lung disease (resulting in severe pulmonary hypertension), pulmonary/tricuspid valve disease, primary pulmonary hypertension, chronic pulmonary embolism, sleep related breathing disorders (obstructive sleep apnoea) or right ventricular infarction.

COPD is the commonest cause and will usually be clinically apparent. Interstitial lung disease also results in right heart failure in a sizeable proportion of patients. Sleep apnoea may not necessarily be apparent unless specifically considered.

Tricuspid regurgitation is most commonly functional as a consequence of right heart dilatation. Other causes are discussed in the section on valvular heart disease (page 175).

In right heart failure due to lung disease, supplementary *oxygen* in patients with hypoxaemia is beneficial. In patients with sleep apnoea, CPAP therapy is helpful. Patients with pulmonary hypertension associated with chronic thromboembolic disease may benefit from surgical thromboendarterectomy (contact the pulmonary vascular diseases unit (PVDU) at Papworth).

Diuretic therapy is helpful but needs to be used with caution as these patients are pre-load dependent so over diuresis is harmful.

PERIPARTUM CARDIOMYOPATHY

This condition manifests in the latter part of pregnancy or in the first few months postpartum. Mothers tend to be over the age of 30 and it is more common in women of African descent and in those who have had multiple births. Treatment is similar to that for other forms of systolic heart failure.

The exception is that there **may** also be a role for *bromocriptine* in those with severe disease. The recommended dose is 2.5 mg BD for 2 weeks and then 2.5 mg OD for a further 6 weeks. A full SCA is needed. If *bromocriptine* is employed, lactation will cease. Generally women should be counselled against breast feeding regardless mainly because of the medications employed. The role of *bromocriptine* is controversial however and should be used only after discussion with the heart failure specialists. If used, anticoagulation with *LMWH* at least prophylactic doses should also be employed.

ACEI and *ARBs* are contraindicated during pregnancy and so *hydralazine* and *nitrates* are usually employed prior to delivery.

Approximately half will recover within 6 months, particularly if the baseline ejection fraction is > 30%. In all patients treatment should ideally be continued for at least 6 months after full recovery of LV function and gradually tapered thereafter. There is a risk of recurrence in subsequent pregnancies and future pregnancy should be avoided if LV function remains impaired.
SCREENING IN CARDIOMYOPATHY

All patients with cardiomyopathy should have a careful family history taken going back three generations if possible. This recommendation applies to patients with hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy (ARVC), left ventricular non-compaction (LVNC), restrictive cardiomyopathy (RCM), and cardiomyopathies associated with extra-cardiac manifestations (e.g., muscular dystrophy, Fabry disease, amyloidosis, or sarcoidosis).

The initial evaluation of the index patient should include family history and pedigree analysis for unexplained heart failure before age 60 or sudden cardiac death in the absence of ischaemic symptoms. First-degree relatives should be screened.

The frequency of recommended re-screening varies with cardiomyopathy type:

- **HCM** – Every three years until 30 years old, except yearly during puberty
- **DCM** - Every three to five years beginning in childhood
- **ARVC** - Every three to five years after age 10
- **LVNC** - Every three years beginning in childhood
- **RCM** - Every three to five years beginning in adulthood

Genetic and family counselling is recommended for all patients and families with cardiomyopathy. Genetic testing should be considered for the one most clearly affected person in a family to facilitate family screening and management. Screening the most affected individual increases the likelihood of detecting a relevant mutation.

CARDIAC TRANSPLANTATION

Patients with severe functional impairment should be considered for transplantation. Cardiac transplantation is now a highly successful procedure with a one-year survival of 86%. It should be considered in patients up to the age of 65 years with advanced heart failure whose symptoms remain limiting despite optimal medical treatment. Contraindications (some relative) to cardiac transplantation include:

- Irreversible pulmonary hypertension (pulmonary vascular resistance > 5 Wood units, a transpulmonary gradient > 15 mm Hg and a pulmonary artery systolic pressure > 60 mmHg)
- Active infection
- Pulmonary infarction within last 6 - 8 weeks
- Significant chronic renal impairment (e.g. Creatinine clearance < 40 ml/min)
- Significant chronic hepatic impairment (e.g. persistent ALT/AST > 2 x upper limit of normal)
- Active or recent malignancy
- Systemic diseases such as amyloidosis
- Significant chronic lung disease
- Significant symptomatic carotid or peripheral vascular disease
• Significant coagulopathies
• Recent peptic ulcer disease
• Major chronic disabling disease
• Diabetes with end organ damage and/or brittle diabetes
• Excessive obesity (e.g. > 30% over normal)
• Active mental illness
• Evidence of drug, tobacco or alcohol abuse within the last 6 months refractory to expert intervention
• Psychosocial instability refractory to expert intervention
• Age > 65 years

Some patients may be considered for other forms of surgery including mitral and tricuspid valve repair and LV reduction.

Dietary advice should be given. Weight loss and reduced salt intake may help. Fluid intake should be limited to 2 litres per day for most patients. Avoid alcohol. Smoking cessation is obvious. Encourage influenza & pneumococcal vaccination. Exercise should be encouraged between exacerbations. Daily weighing at home may allow titration of the patients’ own diuretics.

Patients who are admitted with heart failure should be reviewed by the cardiac rehabilitation team. Some patients benefit greatly from a focussed heart failure rehabilitation programme consisting of graded exercises as well as patient education. You should ALWAYS discuss the diagnosis of heart failure with your patient as well as their families. This is a serious diagnosis with a high mortality and morbidity. Many patients have a poor understanding of their disease process.
PULMONARY HYPERTENSION

Pulmonary hypertension (PH) has been defined as a mean pulmonary arterial pressure (mPAP) ≥ 25 mmHg at rest, measured by right heart catheterisation. PH leads to right ventricular (RV) overload and finally RV failure and death.

Patients with PH often present with non-specific complaints of dyspnoea, fatigue, chest pain, syncope, peripheral oedema, and palpitations.

PH is characterised by different pathological lesions in the pulmonary vasculature, depending on the underlying cause:

- Pulmonary arterial hypertension (PAH)
- PH due to left sided disease
- PH due to lung disease
- Chronic thromboembolic PH (CTEPH)
- PH with unclear or multifactorial mechanisms

Pulmonary arterial hypertension is characterised by abnormalities in the pulmonary vasculature. Idiopathic PAH is rare and there is no associated family history or associated risk factors. Inheritable PAH will usually have a positive family history for the condition. There is also drug and toxin related PAH, most recently seen with weight reducing agents (*fenfluramine*). PAH is also seen in some systemic diseases particularly the connective tissue disorders.

PH due to left sided disease comprises patients with PH caused by left sided heart failure, usually valvular disease or left ventricular (LV) failure (either diastolic or systolic). A new proposed definition for PH due to left heart disease is isolated post-capillary PH (PCWP >15 mmHg and diastolic PAP – PCWP <7 mmHg) and combined post-capillary and pre-capillary PH (PCWP >15 mmHg and diastolic PAP – PCWP ≥7 mmHg).

PH due to lung disease (COPD, ILD) is one of the most common causes of PH.

Chronic thromboembolic PH is caused by a substantial loss of pulmonary arterial vascular lumen because of non-resolving pulmonary thromboembolism. From a therapeutic viewpoint there is a difference between macro- and microvascular CTEPH, since macrovascular CTEPH can be cured surgically by pulmonary endarterectomy. Importantly, a large proportion (~ 40%) of CTEPH patients had no evident episodes of acute pulmonary embolism before diagnosis.

PH with unclear or multifactorial PH comprises patients with disorders that lead to PH by compression, destruction of lung tissue or other extravascular destruction. This group includes haematological, systemic (sarcoidosis) and metabolic disorders.

Diagnosis

A 6 minute walk test or cardio-pulmonary exercise test can be used to assess functional capacity. In PH, a reduction in peak VO2, arterial blood oxygen saturation and anaerobic threshold may be observed. Blood gases may show hypoxia.

A chest x-ray provides information about the lungs, heart size, the size of the proximal pulmonary arteries, and congestion. Also, blood tests (biochemistry, haematology, and thyroid function) should be performed. NT-proBNP may be useful
for RV and LV dysfunction. Pulmonary function studies to assess for respiratory disease should be considered.

The ECG may suggest left sided heart disease or an RV strain pattern or right axis deviation.

CMR is the gold standard for assessing RV function and volumes. CT angiography can demonstrate the pulmonary vasculature and HRCT the lung tissue. Although CT angiography is more commonly used, ventilation perfusion scanning is more sensitive in the diagnosis of CTEPH.

Echo can be helpful in establishing the diagnosis as a good estimation of the pulmonary artery pressure can be made from the peak velocity of the TR jet and adding RA pressure. RV function is not always reliably assessed on echo. Left sided disease can also be evaluated.

Right heart catheterisation is the gold standard.

For patients with sarcoidosis there is an online risk calculator to determine whether PH should be considered: http://www.detect-pah.com/

Treatment

Patients with PH require general lifestyle advice. Depending on the severity of the disease, patients should be instructed to reduce salt and fluid intake. Furthermore, physical activity should be encouraged within symptom limits. Pregnancy carries a high mortality.

In PAH there is evidence of coagulopathies with increased risk of thrombosis. Therefore the use of oral anticoagulation, in the absence of contraindications, should be considered in PAH. CTEPH patients should receive lifelong anticoagulation therapy. Diuretics are recommended in the case of right sided decompensation. Digoxin may be helpful for inotropic support.

Maintenance of sinus is important and ant-arrhythmic drugs may be needed. The use of long term oxygen therapy should be encouraged in patients with hypoxia, because the hypoxic mediated vasoconstriction may be reduced.

Currently available drug therapies that target the pathologic pathways in PH do not cure the disease but are meant to reduce the PVR, pulmonary pressures, and symptoms. Several classes of PH specific drugs are available. Prostacyclin analogues are potent pulmonary vasodilators.

Epoprostenol was the first available short acting pulmonary vasodilator. It was shown to improve exercise capacity, quality of life and survival in patients with idiopathic PAH and other forms of PAH. **Epoprostenol** has to be administered by continuous IV infusion and has serious dose dependent adverse effects. Other prostacyclin analogues are **treprostinil**, which has a longer half-life compared to **epoprostenol**, and **iloprost**, which can be inhaled.

The use of **endothelin receptor antagonists (ERAs)** followed the successful introduction of the prostacyclin analogues. An important advantage of **ERAs** is that they can be administered orally. **Bosentan** improves functional class, and haemodynamics. A disadvantage of **bosentan** is the risk of an increase in hepatic aminotransferases in about 10% of patients, requiring monthly assessment of liver enzymes. This risk can occur any time during the use of **bosentan**. **Ambrisentan** reduces the risk of elevation in hepatic enzymes. However, monthly testing of liver enzymes is recommended.
enzymes is required in patients taking **ambrisentan**. The new ERA **macitentan** probably has no effect on liver enzymes. In addition, it has been shown to reduce morbidity and mortality in PAH. ERAs are recommended in PAH patients in NYHA functional class II and III.

Another group of PH specific drugs are the **phosphodiesterase-5 inhibitors** (**sildenafil** and **tadalafil**), which inhibit the cyclic guanosine monophosphate (cGMP) degrading enzyme phosphodiesterase type 5 and cause vasodilatation through the NO/cGMP pathway. **Phosphodiesterase-5 inhibitors** are recommended in patients in NYHA class II and III.

There have been no large randomised clinical trials performed in non-PAH groups addressing the effects of PAH specific treatment. Therefore, the underlying disease should be treated.

In appropriate selected CTEPH patients pulmonary endarterectomy can be curative. However, not all CTEPH patients are candidates for this surgical therapy, and in a subgroup (10–15%) of CTEPH patients receiving pulmonary endarterectomy PH persists or recurs. In these patients PH specific treatment can be beneficial, and there are several studies indicating improvement in haemodynamics and clinical condition. PH patients in NYHA functional class IV with right heart failure who do not respond to PH specific drug therapy should be considered for balloon atrial septostomy or heart/lung transplantation. By creating an intra-atrial right–left shunt, the RV will be decompressed and the cardiac output will be increased. This intervention should only be considered in patients with arterial oxygen saturation >80%. Patients with indicators of poor prognosis despite maximal medical therapy should be referred for transplantation.

Most patients with PH not related to left sided heart disease or lung disease are referred to other centres where there is an expertise in managing these complex patients. The centres used most frequently locally are in Cambridge and Sheffield.

The pulmonary vascular diseases unit (PVDU) at Papworth Hospital:

Referrals should be made to Dr Joanna Pepke-Zaba, Dr Karen Sheares, Dr John Cannon or Dr Mark Toshner.

Non-urgent referrals: papworth.phreferrals@nhs.net

Pulmonary Vascular Disease Unit
Royal Papworth Hospital NHS Foundation Trust
Papworth Road
Cambridgeshire Biomedical Campus
CB2 0AY
Phone: 01223 638000
The PVDU at the Royal Hallamshire Hospital in Sheffield:
Referrals should be made to Prof David Kiely, Dr Charlie Elliot or Dr Robin Condliffe.
Dr Athanasios Charalampopoulos.
Pulmonary Vascular Disease Unit, RHH
M floor
Royal Hallamshire Hospital
Glossop Rd
Sheffield S10 2JF
Phone (Secs) : 0114 2712132 or 2712187 (Switch 0114 271 1900)
ELECTROLYTE DISTURBANCE

Arrhythmias, especially ventricular arrhythmias, may be exacerbated or caused by hypokalaemia. If K^+ is < 3·5 mmol/L, K^+ replacement should be given. Similarly if the K^+ is > 6·0 mmol/L and associated with arrhythmias treatment should be commenced. Treatment should also be commenced regardless if K^+ is > 7·0 mmol/L.

In patients with hypokalaemia serum magnesium levels should be checked and treated if low: Oral Magnesium Aspartate (Magnasparkate) 1 sachet once or twice daily. For severe hypomagnesaemia magnesium sulphate 8 mmol, 2 g (in 20ml of 0·9% sodium chloride) over 20 minutes followed by an infusion of 65 mmol, 16 g (in 48 ml of 0-9% sodium chloride) over 24 hours.

Hypokalaemia can usually be corrected with oral supplements (Slow K tablets, Sando K effervescent tablets, 2 - 3 tablets TDS).

If IV replacement is required (symptomatic or K^+ 2·5 - 3·0 mmol/L), 40 mmol KCl in 500 ml 0-9% sodium chloride can be infused 4 - 8 hourly.

In life threatening hypokalaemia (associated arrhythmia or K^+ < 2·5 mmol/L) 40 mmol KCl in 500 ml 0-9% sodium chloride can be infused over 2 hours. Cardiac monitoring is mandatory. Use the largest suitable peripheral vein or consider giving via a central line. Check Potassium every 4 hours.

Consideration should be given to the use of potassium sparing diuretics such as spironolactone or amilodine.

Hyperkalaemia is defined as a potassium > 5·5 mmol/L. It is seen with patients in acute renal failure but can also be seen in Addison’s disease and can be drug-induced. For those with end stage renal failure it is best treated by the renal team.

Severe hyperkalaemia ($\geq 6·5$ mmol/L), or a level > 5·9 with ECG changes (tall T waves, flattened or absent p waves, QRS > 120 ms, ST changes) should be treated. Calcium Gluconate 10% 30 ml (6·6 mmol total) should be given IV over 5– 10 minutes. If unavailable you can use Calcium Chloride 10% 10 ml. The arrest trolleys contain 10 mmol/10 mL Calcium Chloride and so give 7 ml. Doses can be repeated after a few minutes if ECG changes persist.

Administering nebulised salbutamol (usually 20 mg, 10 mg if patient has coronary disease) can be helpful. Omit if patient is on a β-blocker.

The next step is to give glucose and insulin. Regimes of glucose and insulin differ widely but the following is recommended: Add 10 U of soluble insulin (i.e. actrapid or humulin S) to 50 ml of 50% glucose. Add glucose/Insulin mix to a 100 ml bag of 0-9% sodium chloride. These can be given peripherally, ideally into a large vein. Administer this infusion over 15 minutes. Blood glucose should be checked at 15, 30, 60 and 90 minutes and hourly for 6 hours to avoid hypoglycaemia. If the initial BM is > 14, give actrapid 10 U WITHOUT glucose. Electrolytes should also be checked 6 hourly. If hypovolaemia is suspected consider volume resuscitation with 0-9% sodium chloride.

For less severe hyperkalaemia, consider calcium resonium orally (15 g, 6 hourly). Obviously discontinuing any K+ sparing or containing drugs and ACEI is essential.

If acidotic (pH < 7·25 or HCO_3 > 15), patients should be given 50 mmol sodium bicarbonate (50 ml of 8·4% NaHCO$_3$) over 5 minutes. Dialysis should be considered.
if severe renal failure is present, but carries risks in the setting of myocardial infarction and haemodynamic instability.

Occasionally recurrent unresponsive ventricular arrhythmias are associated with magnesium depletion (often associated with diuretic therapy) and these patients may respond to magnesium sulphate 8 mmol, 2 g (in 20 ml of 0·9% sodium chloride) over 20 minutes followed by an infusion of 65 mmol, 16 g (in 48 ml of 0·9% sodium chloride) over 24 hours.

For patients with chronic hyperkalaemia, Lokelma (sodium zirconium cyclosilicate) can be used. The dose is 5 - 10 g once a day. NICE recommends Lokelma for treating confirmed persistent hyperkalaemia (> 6.0 mmol/L) in outpatient care, for people who are not taking an optimised dose of RAAS inhibitors because of hyperkalaemia. Veltassa is an alternative.
HYPERTENSION

This chapter is based on latest NICE/BHS guidance issued in 2019, and the latest ESC guidance published in 2018.

DIAGNOSIS

Hypertension is defined as being stage 1, stage 2 or severe (Grades 1 to 3 in the ESC guidance).

Stage 1 hypertension: Clinic blood pressure (BP) is 140/90 mmHg or higher and subsequent ambulatory BP monitoring (ABPM) daytime average or home BP monitoring (HBPM) average BP is 135/85 mmHg or higher.

Stage 2 hypertension: Clinic BP is 160/100 mmHg or higher and subsequent ABPM daytime average or HBPM average BP is 150/95 mmHg or higher.

Stage 3 or severe hypertension: Clinic systolic BP is 180 mmHg or higher or clinic diastolic BP is 120 mmHg or higher.

In diagnosing hypertension, BP should be measured in both arms, taking the highest reading. Ambulatory monitoring should be offered if the BP is > 140/90. Home BP monitoring is an alternative. If the patient has severe hypertension, treatment should be considered immediately without the need for ABPM or HBPM.

History & Assessment

A full medical history is mandatory with particular attention to presence of cardiovascular disease such as angina, heart failure, palpitations, syncope and valvular heart disease. A history of previous TIA or stroke, diabetes, previous renal disease, smoking history, dyslipidaemia, NSAIDs excess. Sweating, headache, palpitations and anxiety may point to phaeochromocytoma. Muscle weakness or tetany may point to hyperaldosteronism. Family history should look for hypertension, premature coronary disease, polycystic kidney disease etc. A full drug history should be taken including any prior anti-hypertensive therapy and details of previous drug intolerances. It is very useful to assess for medicine adherence: in patients presenting with 'resistant hypertension', as over 50% of individuals taking 4 or more anti-hypertensive drugs will be fully or partially non-compliant.

Physical assessment should look for secondary causes: Cushing’s syndrome, enlarged kidneys (PCK disease), renal bruits, radio-femoral delay (coarctation). Bloods may suggest a secondary cause (low potassium, high sodium: hyperaldosteronism).

Whilst awaiting confirmation of hypertension, evidence for target-organ involvement should be sought and a cardiovascular risk assessment made. Calculators are available:

The QRISK2 score is not to be used in patients with type 1 diabetes or those with documented cardiovascular disease.

Patients with confirmed hypertension should have the following:

- Test for the presence of protein in the urine by sending a urine sample for estimation of the albumin : creatinine ratio and test for haematuria using a reagent strip.
• Blood sample to measure plasma glucose, HbA1c, electrolytes, creatinine, estimated glomerular filtration rate, serum total cholesterol and HDL cholesterol.
• Examine the fundi for the presence of hypertensive retinopathy.
• Arrange for a 12-lead electrocardiograph to be performed.
• Consider echocardiography if suggestion of LVH, valve disease or LVSD or diastolic dysfunction.

SECONDARY HYPERTENSION should be considered with:

• Severe or resistant hypertension, when there is an acute rise or increased lability in a patient with previously stable values.
• Age less than 30 years in non-obese, non-black patients with a negative family history of hypertension and no other risk factors (eg, obesity) for hypertension.
• Malignant or accelerated hypertension (eg, patients with severe hypertension and signs of end-organ damage such as retinal haemorrhages or papilloedema, heart failure, neurologic disturbance, or acute kidney injury).
• Hypertension associated with electrolyte disorders including hypokalaemia and metabolic alkalosis.

Patients with renal impairment commonly have hypertension. CKD 1 is defined as a normal GFR (> 90 ml/min/1.73 m²) but suggestion of renal disease from urinalysis or structural abnormalities. CKD 2 is defined as a GFR 60 - 89 ml/min/1.73 m². When eGFR is below 60 ml/min/1.73 m², four different stages of CKD are recognized: CKD 3a with values between 45-59 ml/min/1.73 m² and CKD 3b 30-44 ml/min/1.73 m²; and stages 4 and 5 with values below 30 and 15 ml/min/1.73 m², respectively. Patients with CKD are at significantly increased risk of CV morbidity and mortality.

Renovascular disease should be considered in older patients with severe hypertension, those with unexplained deterioration in renal function during antihypertensive therapy, patients with evidence of widespread vascular disease and those patients with renal atrophy or renal asymmetry. More rarely the condition may be associated with flash pulmonary oedema.

In patients being considered for potential intervention investigative options are duplex Doppler ultrasound, CT angiography or MR angiography.

Primary aldosteronism should be suspected if low serum potassium and high/normal sodium. In up to 50% however the potassium is normal. It should certainly be considered in patients with hypokalaemia and in patients with resistant hypertension or in those with a family history of premature hypertension.

An aldosterone : renin ratio should be measured in the morning. Plasma renin activity is typically very low or undetectable in patients with primary aldosteronism, and the plasma aldosterone concentration high. The ratio is typically > 20-30 but the laboratory will define that. Generally speaking patients with suspected primary aldosteronism should be investigated by hypertension specialists or endocrinologists as confirmatory testing will be required. Adrenal CT is indicated.

In patients with obstructive sleep apnoea, treatment with CPAP may improve blood pressure control.

Cushing’s Syndrome is usually apparent from the typical physical appearance. Bloods may reveal hyperglycaemia. A 24 hour urine cortisol excretion will be elevated (three times normal). Confirmation can be made with a low-dose dexamethasone suppression test. Adrenal CT is indicated.
Phaeochromocytoma is rare. The classic triad of symptoms in patients with a phaeochromocytoma consists of episodic headache, sweating, and tachycardia although most patients will not have all three. Sustained or paroxysmal hypertension is the most common sign of phaeochromocytoma.

The diagnosis is typically confirmed by measurements of urinary and plasma fractionated metanephrines and catecholamines. A 24 hour urine collection is the main test. If there is a high index of suspicion plasma fractionated metanephrines drawn supine with an indwelling cannula for 30 minutes reduces false positives.

A CT or MRI scan of the abdomen and pelvis may detect tumours. A MIBG scan can detect tumours not detected by CT or MRI but the diagnosis is still considered likely.

Once a phaeochromocytoma is diagnosed, all patients should undergo a resection if feasible. Pending surgery, control of hypertension is combined alpha- and beta-adrenergic blockade. Phenoxybenzamine is most commonly used. The initial dose is 10 mg once or twice daily, and the dose is increased by 10 to 20 mg in divided doses every two to three days as needed to control blood pressure and spells. The final dose of phenoxybenzamine is typically between 20 and 100 mg daily. If not tolerated, the calcium channel blocker nifedipine can be used. Doxazosin is another alternative.

After adequate alpha-adrenergic blockade has been achieved, beta-adrenergic blockade is initiated, which typically occurs two to three days preoperatively. The beta-adrenergic blocker should never be started first. Propranolol and atenolol are preferred.

TREATMENT

In those with stage 1 hypertension under the age of 80, treatment should be offered in those with evidence of target organ damage, those with established cardiovascular disease, patients with renal impairment, diabetes and patients with a 10-year risk ≥ 10%. In those with stage 2 hypertension, of any age, treatment should be offered. Consider antihypertensive drug treatment in addition to lifestyle advice for adults aged under 60 with stage 1 hypertension and an estimated 10-year risk below 10%.

Under 80 the target clinic pressure is <140/90, HBPM/ABPM is < 135/85.

In those over 80 years, consider treatment if their clinic blood pressure is over 150/90 mmHg.

Initial (Step 1) treatment

Non-pharmacological:
Weight reduction if body mass index > 25 kg/m². Each kg weight loss yields a BP reduction of 3/2 mmHg. Moderate salt intake (can reduce BP by 8/5 mmHg). Minimise alcohol intake. Discourage excessive consumption of coffee and other caffeine-rich products. Encourage aerobic exercise. Advise smoking cessation.

Pharmacological:
Offer ACEI or an ARB for patients who have type 2 diabetes and are of any age or family origin and those under 55 who are not of black African or Caribbean origin.

Do not combine an ACEI and ARB.
For patients non-diabetic over 55 or those of African or Caribbean origin of any age, offer a calcium channel blocker. If the latter aren't tolerated, consider a thiazide-like diuretic such as indapamide 2.5 mg OD. Bendroflumethiazide and hydrochlorothiazide are no longer recommended as first-line but may be continued if already established. If there is evidence of heart failure, offer a thiazide-like diuretic.

β-blockers are no longer recommended first-line but may be considered in younger patients who are intolerant of ACEI or ARBs, women of child-bearing age and those with evidence of increased sympathetic drive. If β-blockers are used first-line, and a second drug is required, diuretics should be avoided to reduce the risk of diabetes developing.

Step 2 treatment

If BP is not controlled by step 1 treatment, offer a calcium channel blocker in combination with an ACEI or ARB. If a calcium channel blocker is not suitable, or if there is evidence of or a high risk of heart failure, offer a thiazide-like diuretic. In those taking a calcium channel blocker consider an ACEI, ARB or thiazide-like diuretic in combination with a calcium channel blocker.

For people of African or Caribbean origin, consider an ARB, in preference to an ACEI, in combination with a calcium channel blocker.

Step 3 treatment

First ensure step 2 treatment is with optimal doses and check compliance. If further treatment is required, combine an ACEI or ARB with a calcium channel blocker and thiazide-like diuretic.

Step 4 treatment

Regard clinic blood pressure that remains higher than 140/90 mmHg after treatment (with the optimal or best tolerated doses of an ACEI or an ARB plus a calcium channel blocker plus a thiazide-like diuretic) as resistant hypertension, and consider adding a fourth antihypertensive drug. Consider further diuretic therapy with low-dose spironolactone (25 mg OD) if the blood potassium level is 4.5 mmol/l or lower. Use particular caution in people with a reduced estimated glomerular filtration rate because they have an increased risk of hyperkalaemia. Consider higher-dose thiazide-like diuretic treatment if the blood potassium level is higher than 4.5 mmol/l. The next step is to consider a β-blocker of alpha-blocker.

The combinations used should also consider associated co-morbidities such as heart failure (ACEI or ARBs, β-blockers, diuretics including spironolactone), angina (ACEI, ARBS, β-blockers, and calcium channel blockers), diabetes (all classes but care with diuretics), nephropathy (ACEI, ARBS, possibly blockers, calcium channel blockers but not spironolactone. In ESRF diuretics are ineffective).

Statins are recommended as primary prevention in patients under the age of 85 with a ten year coronary event risk ≥ 10% (using QRISK2 tool or JBS3 tool) and where total cholesterol is ≥ 3.5 mmol/l. They are recommended in all patients, regardless of baseline cholesterol, in secondary prevention.

In pregnancy guidelines recommend transitioning patients to methyldopa, nifedipine, or labetalol.
HYPERTENSIVE EMERGENCIES

A hypertensive crisis is an increase in blood pressure, which if sustained over the next few hours, will lead to irreversible end-organ damage (encephalopathy, LV failure, aortic dissection, unstable angina, renal failure). Patients can present with an emergency (high BP associated with a critical event: encephalopathy, pulmonary oedema, acute kidney injury, myocardial ischaemia) or an urgency (high BP without a critical illness, but may include 'malignant hypertension': associated with grade 3/4 hypertensive retinopathy). The aim of therapy is to reduce the diastolic BP to 110 mmHg in 3 - 12 hours (emergency) or 24 hours (urgency). As a rule of thumb, IV treatment is given in hypertensive emergencies, whereas oral usually suffices in hypertensive urgencies.

Sodium nitroprusside (0.25 - 10 µg/kg/min) IV is particularly useful in patients with additional heart failure (see page 233), but should be avoided early after myocardial infarction. **Labetalol** (see page 231) can be used if LV function is preserved and there are no other contraindications to β-blockade. **GTN** (1 - 10 mg/hr) is useful in the presence of ischaemia. **Esmolol** acts within 60 seconds, with a duration of action of 10 - 20 minutes. Typically, the drug is given as a 0.5 - 1 mg/kg loading dose over 1 minute, followed by an infusion starting at 50 µg/kg/min and increasing up to 300 µg/kg/min as necessary.

Nicardipine (IV) may become available in the near future. For adults the initial dose is 3 - 5 mg/hour for 15 minutes, increased in steps of 0.5 - 1 mg every 15 minutes, adjusted according to response, maximum rate 15 mg/hour. Reduce dose gradually when target blood pressure achieved; maintenance 2 - 4 mg/hour. For the elderly the dose is initially 1 - 5 mg/hour, then adjusted in steps of 500 micrograms/hour after 30 minutes, adjusted according to response, maximum rate 15 mg/hour.

Hypertensive urgency is severe blood pressure elevation that will cause damage within days. Diastolic is usually > 130 mmHg and retinal changes will be apparent. The aim should be to reduce BP gradually to a diastolic of 100 mmHg over 48 - 72 hours using an oral regime. For oral treatment, any of the following drugs may be used: **atenolol** 50 - 100 mg OD, **amlodipine** 5 - 10 mg OD, **diltiazem** 120 - 300 mg daily, **lisinopril** 5 mg OD, etc. A combination of a β-blocker and calcium antagonist or ACEI and calcium antagonist is effective and well tolerated. Local expertise advises that the safest and most effective treatment regimen for the majority of patients is **nifedipine** 20mg MR BD plus **amlodipine** 10 mg OD for three days, continuing with **Amlodipine** 10 mg OD thereafter (**Amlodipine** has a large volume of distribution and takes 3 days to become effective).
Aortic Dissection

An aortic dissection is classified as type A or B depending on where it begins. Type A begins in the first (ascending) part of the aorta. Type B begins in the descending part of the aorta. Type A is almost twice as common as type B. Aortic dissection is classified as part of a wider acute aortic syndrome which includes intramural hematoma and penetrating ulcer. Intramural hematoma should generally be treated as would a conventional aortic dissection.

Consider if very sudden and severe ‘tearing’ pain radiating to back, particularly in a known hypertensive. The Aortic Dissection Detection Risk Score (ESC guidelines 2014) is used to grade pre-test probability using a criteria of high-risk conditions (eg connective tissue disease with aortopathy, family history, known aortic valve disease or recent aortic manipulation, known thoracic aortic aneurysm), high-risk pain features (pain in the chest, back or abdomen that is sudden onset, severe in intensity, ripping/tearing or sharp quality) and high-risk examination findings (pulse deficit, systolic blood pressure limb difference >20 mmHg, focal neurological deficit, new aortic murmur of aortic regurgitation). Presence of each of the above categories is scored as 1 and cumulative scores range from 0-3, where 0 is classed as low risk, 1 is moderate risk and 2-3 is high risk (see below flowchart).

Diagnosis is supported by hypertension, loss of pulses and aortic regurgitation and may be complicated by myocardial infarction. Echocardiography may demonstrate a
dissection, but the investigation of choice is CT or MRI. TOE is an alternative if CT or MRI are not immediately available.

Management consists of analgesia (large doses of opiate may be required). Blood pressure should be controlled with IV therapy if necessary as per hypertensive emergencies (see page 170).

A surgical opinion should be sought if a Type A dissection or intramural hematoma. Before referral the clinical appropriateness of surgical intervention needs to be considered. Proximal type A dissections are those most likely to need surgery, uncomplicated Type B distal dissections can often be managed medically.

Aortic dissection occurring during coronary angiography is rare and the management is not clearly defined. It seems to be more common during right coronary angiography, especially when left Amplatz catheters are employed. Immediate stenting of the right coronary ostium can be beneficial but mortality is still high at up to 30%. From the technical viewpoint, soft-tip wires should be used when attempting to access the true lumen, and if the initial wire enters the false lumen, another soft-tip wire should be carefully manipulated into the true lumen (double-wire technique). If conventional methods have resulted in dissection, the use of a ball-tipped guidewire, such as the Magnum wire, proves very useful to localise the true lumen in cases of spiral dissection. Stenting should be performed as soon as possible, as saving time is mandatory in this setting, and implantation should be started distally and finally to the RCA ostium.

Patients require regular monitoring (including imaging). Even after surgery for type A acute dissection, patients require regular monitoring as one in four patients will return within five years for a procedure of the remaining aortic arch or descending aorta.

Thoracic aortic aneurysm

Most thoracic aortic aneurysms (TAA) are asymptomatic. Risk factors include those for vascular disease in general, those with AAA, aortic valve disease (including bicuspid aortic valve), connective tissue disorders (Marfan’s, Ehlers-Danlos), positive family history and cerebral aneurysms.

The indications for repair of thoracic aortic aneurysm include the following:

- The presence of symptoms, although most thoracic aortic aneurysms are asymptomatic.
- An end-diastolic aortic diameter of 5 to 6 cm for an ascending aortic aneurysm and 6 to 7 cm for a descending aortic aneurysm. General surgical criteria at Glenfield Hospital is 5.5 cm for thoracic aortic aneurysm, and 5 cm with aortopathy involving a bicuspid aortic valve.
- For smaller patients, including many women, elective repair is performed for aneurysms greater than twice the size of the non-aneurysmal aorta (normal segment).
- Accelerated growth rate (≥ 10 mm per year) in aneurysms less than 5 cm in diameter.
- Evidence of dissection
- An ascending thoracic aortic aneurysm > 4.5 cm in diameter at the time of aortic valve surgery.
In patients with aortic regurgitation of any severity and primary disease of the aortic root or ascending aorta (such as Marfan syndrome) aortic valve replacement and aortic root reconstruction are recommended when the degree of dilatation is ≥ 5 cm.
Cardiac myxomas (CM) are the commonest type of primary cardiac tumour in adults. They are usually found in the left atrium and are more common in women (twice that of men). Most commonly they arise in the left atrium. They occur at all ages but mostly present in middle age. Up to a third are asymptomatic and found incidentally. Most patients however have constitutional, embolic or cardiac symptoms.

Dyspnoea, palpitations and syncope are the commonest cardiac symptoms. Apart from dyspnoea there can be frank pulmonary oedema and pleural effusions. CM may obstruct the mitral valve or damage the valve causing regurgitation. Fever, weight loss and flu-like symptoms are reported along with myalgia and arthralgia. Strokes and TIAs and syncope can be the presenting feature. Systemic emboli can also occur.

Right atrial CM can cause Budd-Chiari syndrome with hepatic congestion resulting in abdominal pain. They can also present with clotting disturbances. Pulmonary emboli and paradoxical embolism can result from right sided CM.

Clinical findings are variable murmurs, split heart sounds and rarely the ‘tumour plop’. There may be anaemia, polycythaemia, high CRP and globulins. ECG abnormalities are non-specific. AF is uncommon.

On echo appearances are variable. CT or cardiac MRI should be considered if doubt persists after TTE or TOE.

Prompt surgical resection is generally recommended. The role of anticoagulation is not established.
VALVULAR HEART DISEASE

It is important to recognise significant valvular heart disease as patients may benefit from surgical intervention, either in terms of valve repair or replacement. Left uncorrected, valvular heart disease often leads to irreversible ventricular dysfunction and/or pulmonary hypertension. It is therefore essential to refer patients for cardiological assessment **early**. These guidelines are based on the ESC Guidelines of 2017.

Aortic Stenosis

The three classical symptoms of aortic stenosis (AS) are angina, heart failure and syncope, the most common initial symptom being a decrease in exercise tolerance or dyspnoea on exertion. In ‘asymptomatic’ patients with mild-moderate AS where there is doubt about whether there might be symptoms, cautious exercise testing can be useful - a fall or only minimal rise in blood pressure indicates symptomatic disease. Exercise testing is contraindicated in patients with symptomatic AS and should only be performed after review by a cardiologist.

Assessment and follow-up

AS is best assessed initially by echocardiography. This allows quantification of the severity of the stenosis and assessment of the rest of the heart. Severity of AS is assessed according to the following criteria:

<table>
<thead>
<tr>
<th>Mean gradient (mmHg)</th>
<th>Peak gradient (mmHg)</th>
<th>AoV area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>< 25</td>
<td>< 36</td>
</tr>
<tr>
<td>Moderate</td>
<td>25 - 39</td>
<td>36 - 64</td>
</tr>
<tr>
<td>Severe</td>
<td>≥ 40</td>
<td>≥ 65</td>
</tr>
</tbody>
</table>

Once mild AS is present, a gradual increase in severity is seen in most patients, with an increase in mean gradient of 7 mmHg per year and a reduction in valve area of 0.1 cm² per year. However, there is a wide variation in the rate of progression between individuals, being faster in those with degenerative as opposed to those with congenital or rheumatic valve disease. It is recommended that:

Asymptomatic individuals with **mild** AS (mean gradient < 25 mmHg) should undergo 2-3 yearly outpatient review including echocardiography (more frequently if there is significant calcification).

Asymptomatic individuals with **moderate** AS (mean gradient 25 - 49 mmHg) should undergo six-monthly outpatient review including echocardiography at least annually.

Asymptomatic individuals with **severe** AS (mean gradient > 50 mmHg) should be referred to a cardiologist for further assessment. Review should be 6 monthly and sooner if become symptomatic. Exercise testing and/or DSE may help assess the level of risk.

Symptomatic individuals with any degree of AS should be referred to a cardiologist for further assessment.
Echo reports usually quote mean and peak valve gradients; mean gradients are more useful in planning surgery and are used here. Be careful not to confuse the two - peak gradients are significantly higher than mean gradients. AS is notoriously difficult to assess in the presence of left ventricular dysfunction - the valve gradient assumes that LV function is normal. Echo gradients can be very misleading if LV function is impaired - in such cases, always refer to a cardiologist for further advice. DSE may help identify patients who need surgery sooner rather than later. NT-proBNP measurements can also be useful in monitoring patients.

Indications for surgery

Definite indications for surgery in AS are:

- Symptoms caused by AS (regardless of severity).
- High gradient AS (mean > 40 mmHg or peak velocity > 4.0 m/s).
- Low-flow, low gradient (< 40 mmHg) with reduced EF but contractile reserve on stress imaging.
- Asymptomatic severe AS with left ventricular systolic dysfunction.
- Asymptomatic severe AS with abnormal exercise test (symptoms, drop in BP or ST changes).
- Asymptomatic severe AS at the time of other cardiac surgery (e.g. CABG).

One might also consider surgery (not TAVI) in patients with:

- Asymptomatic patients with severe AS and anticipated high levels of exertion, plans for pregnancy, etc.
- Asymptomatic patients with very severe aortic stenosis (peak velocity > 5.5 m/s).
- Asymptomatic patients with very high NT-proBNP levels.
- Patients with moderate AS undergoing CABG.
- Patients with moderate AS and LVH, especially in the absence of systemic hypertension.

Operative mortality in patients undergoing surgery for AS is 2 - 9% with a three-year survival rate of 80%. Old age is not a contraindication to surgery - the risk : benefit ratio is often favourable even in patients in their 80s.

Older patients require coronary angiography and ascending aortography before surgery. In addition CT scanning of the aorta can help determine operative strategy and should be considered in all patients. Bicuspid valves are common in AS, and there is a clear relationship between the presence of bicuspid valves and abnormalities of the aortic root even in the absence of severe AS. Concomitant treatment of a dilated aorta is, therefore, recommended at the same thresholds as in AR. Screening of first degree relatives is indicated in bicuspid AS. Carotid scans should also be considered in older patients as the radiated murmur could mask significant carotid disease.

In older patients (over 75), especially those with significant co-morbidities, transcatheter aortic valve implantation (TAVI) should be considered. Those who have previously undergone cardiac surgery are candidates as are those with more limited mobility. Contra-indications to a transfemoral approach include those with a valve annulus < 18 mm or > 30 mm, peripheral arteries < 6 - 9 mm, severe
peripheral artery calcification or tortuosity, and AAA with thrombus. The trans-apical approach is an alternative. Referral to the TAVI MDT is indicated (see page 49). Mortality is about 15%, stroke risk 5 - 8%, vascular complications 5 - 8%, tamponade 2 - 3%.

Balloon aortic valvotomy (BAV) may be considered as a bridge to surgical AVR or TAVI in unstable patients or in patients who require urgent major non-cardiac surgery. BAV can also be considered as a diagnostic means of assessing the patient's likelihood of benefiting from TAVI such as those with other potential causes for their symptoms (e.g severe lung disease).

Aortic Regurgitation

Patients with chronic aortic regurgitation (AR) may remain asymptomatic for many years despite significant regurgitation. The increased volume load on the left ventricle leads to progressive LV dilatation and ultimately heart failure. The most common initial symptom is exertional dyspnœa or a reduction in exercise tolerance. There are many causes including idiopathic dilatation of the aorta, congenital abnormalities of the aortic valve (most notably bicuspid valves), calcific degeneration, rheumatic disease, infective endocarditis, systemic hypertension, myxomatous degeneration, dissection of the ascending aorta, and Marfan syndrome. Less common causes include traumatic injuries to the aortic valve, ankylosing spondylitis, syphilitic aortitis, rheumatoid arthritis, osteogenesis imperfecta, giant cell aortitis, Ehlers-Danlos syndrome and Reiter's syndrome.

Afterload reduction (with ACEI or ARB) can slow the rate of left ventricular dilatation and is now standard therapy in patients with severe AR and LV dilatation. β-blockers can also be useful. It is common clinical practice to advise β-blocker or losartan in patients with Marfan syndrome or bicuspid aortic valve if the aortic root and/or ascending aorta is dilated.

Assessment & follow-up

AR should always be assessed by echocardiography. MRI can help when echo measurements are equivocal. This allows quantification of the severity of the regurgitation and assessment of the rest of the heart. Several parameters are used to determine overall severity on echocardiography and the echo report will contain a final conclusion based upon these parameters. It is recommended that:

- **Asymptomatic** individuals with **mild** AR do not usually require follow-up.
- **Asymptomatic** individuals with **moderate** AR and a normal LV should be seen every 12 months with echocardiography every 2 years.
- **Asymptomatic** individuals with **moderate** or **severe** AR and a **dilated** or **impaired** LV should be seen every 6 months with echocardiography every 12 months. The frequency of echocardiography should increase as the threshold for surgery approaches. Measurement of NT-proBNP may be useful.
In patients with aortic root dilatation (but still < 5·0 cm), annual echocardiograms are needed to evaluate progression of aortic root size. For patients with poor echo windows assessment with CMR is a useful alternative imaging modality. CT is indicated if there are suspected aortic root or ascending aorta issues, patients with bicuspid aortic valves and in all patients referred for surgery.

Echo markers of severity of AR include colour Doppler jet width, Doppler vena contracta width, regurgitant volume and regurgitant fraction:

Symptomatic individuals with **any degree** of AR should be referred to a cardiologist for further assessment.

Indications for surgery

In patients with chronic AR indications for surgery are:

- Symptomatic severe AR
- Asymptomatic severe AR with evidence of early LV systolic dysfunction (EF < 50% or LV end-systolic diameter > 5 cm or LV end-diastolic diameter > 7·0 cm)
- Asymptomatic AR of any severity with aortic root dilatation > 5·5 cm (or > 5·0 cm in Marfan syndrome or bicuspid aortic valve).

Operative mortality for elective aortic valve replacement for chronic AR is 4 - 10% with a five-year survival of 70 - 85%.

Mitral Stenosis

The prognosis for patients with asymptomatic mitral stenosis (MS) is thought to be good. There is little modern information on natural history. Generally, disease progression is gradual unless a complication (such as the onset of atrial fibrillation) occurs.
Assessment & follow-up

Severity of MS is assessed on echocardiography according to the following criteria:

<table>
<thead>
<tr>
<th>Mean MV gradient (mmHg)</th>
<th>MV area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>< 6</td>
</tr>
<tr>
<td>Moderate</td>
<td>6 - 9</td>
</tr>
<tr>
<td>Severe</td>
<td>≥ 10</td>
</tr>
</tbody>
</table>

Asymptomatic patients with moderate to severe MS should be seen annually with an up to date echocardiogram. Asymptomatic patients with lesser degrees of MS can usually be reviewed less frequently. Symptomatic patients should always be referred to a cardiologist.

Indications for surgery

Invasive correction of MS can be undertaken either by percutaneous mitral balloon valvuloplasty (commissurotomy) or by surgical mitral valve repair, commissurotomy or replacement (mostly). TOE is essential to select the most appropriate procedure by examining the mitral valve anatomy in detail. To be suitable for percutaneous mitral balloon valvuloplasty, patients should have a mitral valve with favourable echo features (minimal calcification, no more than mild MR, mild calcification, and no left atrial thrombus). In addition there should not be significant aortic or tricuspid valve disease. Indications for percutaneous mitral balloon valvuloplasty are:

- Symptomatic (NYHA functional class II - IV) patients with moderate-severe MS (MV area ≤ 1·5 cm²).
- Asymptomatic patients with moderate-severe MS (MV area ≤ 1·5 cm²) with pulmonary hypertension (PA systolic pressure > 50 mmHg at rest).
- Asymptomatic patients with moderate-severe MS (MV area ≤ 1·5 cm²) with new onset atrial fibrillation.

Mitral valvuloplasty is carried out under general anaesthetic. TOE guidance is usually used. Femoral arterial and venous sheaths are inserted, and a catheter is passed through the right heart to measure pressures, saturations and do a pulmonary angiogram and follow-through to visualise the left atrium (LA). A trans-septal puncture (RA to LA) is carried out, and a large balloon is passed through this into the LV. The balloon blows up in two stages, the distal part first, which is then pulled back against the MV, and then the whole balloon is inflated across the MV. The procedure takes about 2 hours. Risk of severe MR requiring emergency surgery is 1 in 100. Risk of causing MR is 1 in 20. Risk of stroke is 1 in 100. Risk of persistent ASD is 1 in 200. Risk of death is 1 in 200. There is a risk of developing AF (if not already present), which may require cardioversion. It is significantly less successful (< 50%) in patients over the age of 65 years.

Mitral valve surgery is usually indicated in:

- Patients with moderate-severe MS (MV area ≤ 1·5 cm²) and NYHA functional class III - IV symptoms.
Patients with severe MS (MV area < 1.0 cm²), NYHA functional class I - II symptoms, and severe pulmonary hypertension (PA systolic pressure > 60 - 80 mmHg).

After successful percutaneous mitral balloon valvuloplasty, patients should be followed up annually with an echocardiogram, chest X-ray and ECG if they remain asymptomatic or minimally symptomatic.

Medical therapy of MS consists of diuretics and long acting nitrates for the management of dyspnoea. β-blockers and non-dihydropyridine calcium antagonists can improve exercise capacity. Warfarin is mandatory in the presence of atrial fibrillation and should be seriously considered in sinus rhythm when TOE shows dense spontaneous echo contrast or visible thrombus, in those with a previous systemic embolism or when the left atrium is > 50 mm in diameter.

Mitral Regurgitation

Patients with mitral regurgitation (MR) may remain asymptomatic for many years; the average interval from diagnosis to the onset of symptoms is 16 years. Most patients with chronic MR have mild-moderate disease and are unlikely ever to need surgical intervention.

Mitral valve prolapse is one aetiology and is more common in patients with Marfan’s syndrome and those with pectus excavatum. It occurs in 1 - 2% of the population and may be familial. Prognosis is worse when there is moderate to severe MR and when the EF is < 50%.

Other common causes of MR are rheumatic heart disease, IHD, infective endocarditis, certain drugs, and collagen vascular disease. MR may also occur secondary to a dilated annulus from LV dilatation. In some cases, such as ruptured chordae, ruptured papillary muscle, or infective endocarditis, MR may be acute and severe. Alternatively, MR may worsen gradually over a long period of time.

When mitral regurgitation is secondary (ischaemic LV dilatation, dilated cardiomyopathy) there is limited evidence that intervention is of benefit.

Assessment & follow-up

MR is best assessed by echocardiography (TOE is particularly useful, especially if mitral valve surgery is being considered or if there is concern the degree of MR is being underestimated). Measurement of NT-proBNP can be useful. In patients with known MR, the recommended follow-up intervals are as follows:
<table>
<thead>
<tr>
<th>MR severity</th>
<th>LV function</th>
<th>Frequency of echocardiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Normal LVESD and EF</td>
<td>Every 5 years</td>
</tr>
<tr>
<td>Moderate</td>
<td>Normal LVESD and EF</td>
<td>Every 2 years</td>
</tr>
<tr>
<td>Moderate</td>
<td>LVESD > 4.0 cm or EF < 60%</td>
<td>Every 1 year</td>
</tr>
<tr>
<td>Severe</td>
<td>Normal ESD and EF</td>
<td>Every 1 year</td>
</tr>
<tr>
<td>Severe</td>
<td>LVESD > 4·0 cm or EF < 60%</td>
<td>Every 6 months</td>
</tr>
</tbody>
</table>

LVESD indicates LV end-systolic diameter; EF indicates LV ejection fraction.

It is obviously not necessary to adhere to these guidelines in patients deemed unsuitable for surgery.

Various echo criteria are used to quantify the degree of MR including colour Doppler jet area, Doppler vena contracta width, pulmonary venous flow patterns (specifically systolic flow reversal) and regurgitant volume and fraction.

<table>
<thead>
<tr>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour Doppler jet width</td>
<td>Central jet, width less than 4 cm² or less than 20% LA area</td>
<td>Greater than mild but no criteria of severe MR</td>
</tr>
<tr>
<td>Vena contracta width</td>
<td>< 0·3 cm</td>
<td>0·3 – 0·69 cm</td>
</tr>
<tr>
<td>Regurgitant volume</td>
<td>< 30 ml</td>
<td>30 - 59 ml</td>
</tr>
<tr>
<td>Regurgitant fraction</td>
<td>< 30%</td>
<td>30 - 49%</td>
</tr>
</tbody>
</table>

Indications for surgery

The surgical options in MR include mitral valve replacement or mitral valve repair. Valve repair has several advantages, including an operative mortality of 1 - 2% (compared to 5 - 10% for valve replacement), and is usually performed if the anatomy of the valve is suitable.

Surgical intervention is generally indicated in **severe** MR for:

- Symptomatic patients (with symptoms due to the MR).
Asymptomatic patients with mild-moderate LV dysfunction (EF 30 - 60% and LVESD 4.5 - 5.5 cm).

Surgery should also be considered in severe MR for:

- Asymptomatic patients with normal LV function but AF or pulmonary hypertension (> 50 mmHg at rest).
- Asymptomatic patients with EF 50 - 60% or LVESD 4.5 - 5.5 cm.
- Severe LV systolic dysfunction (EF < 30% and/or LVESD > 5.5 cm) only if it is highly likely that a valve repair (rather than replacement) can be performed.

Medical therapy of MR is restricted largely to the use of diuretics. There is no evidence that the routine use of ACEI or ARB confers any benefit in mild MR. However, in patients with functional or ischaemic MR (resulting from dilated or ischaemic cardiomyopathy), ACEI or ARB are beneficial. If LV systolic dysfunction is present, treatment with drugs such as ACEI or ARB and β-blockers such as Bisoprolol or Carvedilol and spironolactone should be considered. CRT has also been shown to reduce the severity of MR.

Repair of the mitral valve can be achievable percutaneously in selected patients (MitraClip™). This is usually for those at very high surgical risk and particularly in those with secondary MR in whom surgical revascularisation is not being considered.

Tricuspid Regurgitation

Significant tricuspid regurgitation (TR) in adults is most commonly secondary to right heart dilatation. The disorders that induce pulmonary hypertension and secondary right ventricular dilatation include the following:

- Left-sided heart failure.
- Mitral stenosis or regurgitation.
- Primary pulmonary disease – cor pulmonale, pulmonary embolism, pulmonary hypertension of any cause.
- Left to right shunt – atrial septal defect, ventricular septal defect, anomalous pulmonary venous return.
- Eisenmenger syndrome.
- Stenosis of the pulmonic valve or pulmonary artery.
- Hyperthyroidism
- Diseases of the right ventricle causing dilatation include right ventricular cardiomyopathies and right ventricular myocardial infarction.

Causes of primary TR include:

- Direct valve injury from a permanent pacemaker or implantable cardioverter-defibrillator lead placement or removal or from endomyocardial biopsy.
- Chest trauma.
- Infective endocarditis.
- Ebstein's anomaly, the most common form of congenital disease affecting the tricuspid valve.
• Rheumatic fever.
• Carcinoid syndrome (poor prognosis, diagnosis with urine 5-HIAA)
• Ischaemic heart disease affecting the right ventricle with papillary muscle dysfunction or rupture.
• Myxomatous degeneration associated with tricuspid valve prolapse, which occurs in as many as 40% of patients with prolapse of the mitral valve.
• Connective tissue disorder (eg, Marfan syndrome).
• Marantic endocarditis in systemic lupus erythematosus or rheumatoid arthritis
• Drug-induced disease. There was an association between TR and the combined use of the anorectic drugs, fenfluramine and phentermine, in some studies. The dopamine agonist pergolide may induce TR by a mechanism similar to that with anorectic drugs and carcinoid syndrome.

Treatment for severe secondary TR is usually tricuspid annuloplasty performed at the time of left-sided valve surgery.

Indications for surgery in primary severe TR is symptomatic patients and asymptomatic patients with evidence of progressive RV dilatation or decline of RV function.

Medical therapy is restricted largely to the use of diuretics.

INFECTIVE ENDOCARDITIS

The incidence of infective endocarditis (IE) in Europe is around 3 - 10 episodes per year / 100,000 with increased incidence with age. Predisposing cardiac conditions include mitral valve prolapse, the presence of prosthetic material (e.g. valves and patches, but not coronary stents), rheumatic heart disease, degenerative and bicuspid aortic valve disease, and many forms of congenital heart disease. IE may also involve previously normal heart valves and may be associated with infection due to an intravascular device (pacing leads etc).

The commonest causative organism is now Staphylococcus aureus (30%) followed by the viridans group of streptococci (17% of episodes). In IV drug users Staphylococcus aureus is commonest, causing 50 - 60% of episodes. IE occurring ‘early’ (up to 1 year) after the implantation of prosthetic heart valves is thought to be due to perioperative contamination and is mainly caused by staphylococci (especially coagulase-negative). ‘Late’ prosthetic valve infections are commonly due to viridans streptococci, Staphylococcus aureus and coagulase-negative staphylococci.

Enterococcal endocarditis represents about 10% of all cases, and may be a pointer to disease of the GU or lower GI tract. Around 2 - 10% of cases are caused by fungi (mainly Candida or Aspergillus spp.), particularly in patients with immunosuppression, IV drug use, cardiac surgery, prolonged exposure to antimicrobial drugs and IV feeding. In around 5% of patients with proven IE, conventional blood cultures are negative. This may be due to recent exposure to antimicrobial drugs or infection with slow-growing or fastidious organisms (e.g. ‘HACEK’ organisms, nutritionally variant streptococci, Coxiella burnetii or Brucella spp.).
HACEK organisms: *Haemophilus parainfluenzae*, *Haemophilus aphrophilus*, *Actinobacillus actinomycetemcomitans*, *Cardiobacterium hominis*, *Eikenella corrodens*, *Kingella kingae*.

Mortality varies from 4 - 16% with viridans streptococci to 25 - 47% with *Staphylococcus aureus*, and over 50% with fungal infections. Mortality is chiefly from heart failure, CNS emboli or uncontrolled infection. Mortality from right-sided endocarditis in IV drug users is around 10%.

Investigation

IE should always be suspected in patients with unexplained fever (fever is present in 90%), bacteraemia or systemic illness and/or with an apparently new murmur (heard in up to 85%) or other features of the illness. Up to 25% of patients have embolic complications at the time of diagnosis. Patients with suspected IE should be admitted to hospital.

Routine initial investigations should include:

- Full blood count (leucocytosis/leucopenia, anaemia, thrombocytopenia)
- CRP (or ESR) - raised
- U&Es
- Liver function tests
- Urine dipstick analysis (microscopic haematuria) and MSU for microscopy/culture
- Chest X-ray
- ECG

However, the key diagnostic investigations are: **BLOOD CULTURES & ECHOCARDIOGRAM**

Blood cultures

At least three (and preferably six) sets of blood cultures should be taken from different sites over several hours. Sampling during a temperature peak does not improve the sensitivity of blood cultures. If the patient is stable it is reasonable to delay antibiotic treatment to allow for comprehensive sampling. Once antibiotics have been given, it becomes much harder to identify a causative organism.

If cultures are negative despite a high level of suspicion of IE, samples can be taken in special media that allows the growth of fastidious organisms. Serology for *Coxiella burnetii*, *Tropheryma whippeli*, *Bartonella* should be considered. Liaise with the duty microbiologist for further advice.

Echocardiogram

Transthoracic echocardiography (TTE) will detect 65% of vegetations. Transoesophageal echocardiography (TOE) will detect 95% of vegetations. TOE is particularly useful for the detection of mitral valve and prosthetic valve vegetations. TOE is also more sensitive at detecting aortic root and septal abscesses and leaflet perforations. MRI or CT can also be useful. TTE is also useful in monitoring response to therapy.
Diagnostic criteria
Clinical criteria for IE can be divided into major and minor. A diagnosis can be made on the basis of two major criteria or one major and three minor criteria or five minor criteria. Possible IE is the presence of one major and one minor or three minor.

Major criteria
- Positive blood cultures
 - Typical organism from 2 blood cultures (Viridans streptococci, Streptococcus bovis, HACEK group, Staphylococcus aureus or community-acquired enterococci.
 - Other microorganisms consistent with IE
 - Persistent positive blood cultures taken > 12 hours apart
 - > 3 positive blood cultures taken over more than 1 hour
 - Single positive blood culture for Coxiella burnetii
- Endocardial involvement
- Positive echo findings (vegetation, abscess, pseudoaneurysm, intracardiac fistula)
- New valvular regurgitation (worsening of pre-existing murmur not sufficient)
- Dehiscence of valve prosthesis

Minor criteria
- Predisposing valvular or cardiac abnormality
- IV drug abuser
- Pyrexia > 38°C
- Vascular phenomena: emboli, septic infarcts
- Immunological phenomena: nephritis, Osler’s nodes, splinter haemorrhages, Roth’s spots
- Blood cultures suggestive (organism grown but not achieving major criteria)
- Suggestive echo findings (but not meeting major criteria)

Other imaging modalities can aid in the diagnosis and evaluation of complications of IE including CT, MRI and PET scanning – specifically PET using the radionuclide tracer 18F-fluorodeoxyglucose (18F-FDG) which is a tracer taken up by any cell undergoing high glycolytic activity (as is the case in tumour cells, inflammation and infection).

Management

Antibiotic therapy

A tunneled central venous line can be very useful when prolonged courses of IV antibiotics are required. Arrangements for their insertion can be made via ICE or by contacting the vascular access team on 6861.

Antibiotic regimens should always be discussed with the duty microbiologist. Current UK guidelines recommend the following:
Endocarditis caused by **streptococci**

eg. *Viridans streptococci*: benzylpenicillin IV 1·2 g QDS (or **vancomycin** if penicillin-allergic 30 mg/kg per 24 hours IV in two divided doses) plus low-dose **gentamicin** (e.g. 80 mg OD)

Endocarditis caused by **enterococci**

eg. *Enterococcus faecalis*: **amoxicillin** IV 2 g every four hours (or **vancomycin** if penicillin-allergic) plus low-dose **gentamicin** IV (e.g. 80 mg OD)

Endocarditis caused by **staphylococci**

eg. Staph. aureus, Staph. epidermidis: **fluclouxacillin** IV 2 g every four to six hours (or **benzylpenicillin** if penicillin-sensitive, or **daptomycin** if penicillin allergic or MRSA) plus **gentamicin** (or **fusidic acid**).

Endocarditis caused by **HACEK bacilli**: **ceftriaxone** 2 g per day is usually the drug of choice

Response to therapy

It is important to monitor response to therapy closely. As well as regular bedside reviews of clinical status, you should also check:

- Echocardiogram (once weekly) - to assess vegetation size and look for complications (e.g. valve destruction, intracardiac abscesses)
- ECG (at least twice weekly) - to detect conduction disturbances, which may indicate development of an aortic root abscess in aortic valve infection
- Blood tests (twice weekly) - CRP, full blood count and U&Es

Surgery

Referral for consideration of surgery is indicated in patients with:

- Moderate to severe cardiac failure due to valve compromise
- Valve dehiscence
- Uncontrolled infection despite appropriate antimicrobial therapy
- Relapse after optimal medical therapy
- Threatened or actual systemic embolism
- *Coxiella burnetii* and fungal infections
- Paravalvar infection (e.g. aortic root abscess)
- Sinus of Valsalva aneurysm
- Valve obstruction

It is prudent to inform the surgeons early in any case of endocarditis as, even patients without the above factors, may subsequently need surgery at short notice. A recent meta-analysis published online in Heart suggests early surgical intervention can be associated with improved outcomes. Management of device infections will include complete removal of the system (device and lead extraction).
Antibiotic Prophylaxis

There is no definitive evidence that antibiotic prophylaxis reduces the risk of IE. Guidelines changed in 2008 reducing the indications for prophylaxis but were updated by NICE CG64 in 2016. So now some patients can and should be offered prophylaxis.

People with the following cardiac conditions should be considered as being at high risk of developing infective endocarditis:

- Acquired valvular heart disease with stenosis or regurgitation
- Hypertrophic cardiomyopathy
- Previous infective endocarditis
- Structural congenital heart disease, including surgically corrected or palliated structural conditions, but excluding isolated atrial septal defect, fully repaired ventricular septal defect or fully repaired patent ductus arteriosus, and closure devices that are judged to be endothelialised
- Valve replacement (including TAVI)

Those with native valve disease are deemed moderate risk.

High risk dental procedures are extractions, root canal work, dental scaling and other procedures involving manipulation of the gums.

Antibiotic prophylaxis is indicated and should be offered (with consent) for high risk patients having high risk dental procedures. Prophylaxis should be with **amoxicillin** 3 g PO or for those allergic to penicillin **clindamycin** 600 mg PO one hour beforehand.

Other advice includes dental surveillance to ensure good dental hygiene every 6 months for those at high risk and annually for those at moderate risk. Tattoos and intravenous drug abuse should be avoided.

For non-dental procedures the advice for prophylaxis is much less clear, particularly in terms of antibiotic regimens, and I would recommend discussion with microbiology for high risk patients.

MANAGEMENT OF PROSTHETIC VALVES

The routine follow up of patients with prosthetic valves is a contentious area. If patients have undergone successful surgery, and are asymptomatic, follow up should not be annually.

All patients should have a baseline echo after surgery. In individuals with a bioprosthetic aortic valve a routine echo at 7 years is recommended, for a bioprosthetic mitral valve at 5 years. Earlier assessment should only be undertaken if there is a change in clinical status, if there are findings consistent with valve dysfunction, or if there has been exposure to the clinical risk of valve thrombosis.

Repeat assessments should only be undertaken if repeat intervention (with or without symptoms) would be undertaken.

In patients with mechanical valves, **anticoagulation** must be maintained unless there is a need for surgical intervention. Target INR for prosthetic valves is partly dependent upon the type and position of the valve. See the following table.
Recommended INR for mechanical prosthetic valves

<table>
<thead>
<tr>
<th></th>
<th>Sinus rhythm normal left atrial size (i.e. most aortic valve replacement patients)</th>
<th>Atrial fibrillation enlarged left atrium (i.e. most mitral valve replacement patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low thrombogenicity prosthesis</td>
<td>2·0 – 3·0</td>
<td>2·5 – 3·5</td>
</tr>
<tr>
<td>Other prostheses</td>
<td>3·5 – 4·5</td>
<td>3·5 – 4·5</td>
</tr>
</tbody>
</table>

Generally speaking **warfarin** should be stopped 5 days pre-op. **Enoxaparin** should be started 3 days pre-op, at 100 IU/kg OD. The dose should be omitted on the morning of surgery. Ideally **enoxaparin** 5000 U should be given 6 hours post-op providing haemostasis is secure. **Enoxaparin** should be increased to 100 IU/kg BD the following morning after reassessment for bleeding. **Warfarin** should be restarted at USUAL MAINTENANCE DOSE on the day after surgery and **Enoxaparin** continued until INR is therapeutic for TWO consecutive days. Some consultants prefer **UFH** rather than **enoxaparin** and, if possible, the relevant cardiologist should be contacted.

For emergency reversal of **warfarin** see the Appendix.
Glenfield Hospital is the home of the East Midlands Congenital Heart Centre (EMCHC). EMCHC provides inpatient and outpatient care for children with all forms of cardiac disease and for adults with congenital heart disease (ACHD) for the East Midlands region.

The majority of ACHD admissions are for elective cardiac catheterisation (diagnostic and interventional) and surgery. Catheter patients are looked after on Wards 32 and 34 and occasionally elsewhere. If you are an FY doctor on those wards you may be asked to clerk ACHD patients. They will be your responsibility. Surgical patients are looked after on Ward 31 and you will have little, if any, input to their care.

ACHD patients with acute cardiac problems are looked after on Ward 33 under the care of Drs Bolger, Bu’Lock and Saifulla. You will be notified of any admissions by the ACHD team, which also includes the specialist nurses Chris Thornborough, Karen Duncan, Emma Sparks, Russell Adams and the ACHD registrar.

ACHD patients often have complex anatomy and pathophysiology and may be scheduled for interventions that you have little knowledge of (transcatheter pulmonary valve implantation, coarctation stenting, ASD closure etc). You are unlikely to have had responsibility for looking after such patients previously. The ACHD team have a very “hands on” approach and will provide clear instructions about management. If you are in any doubt about a management plan please contact an ACHD team member via consultants’ secretaries, by contacting the relevant consultant on their mobile phone via switchboard (they’re very approachable and will want to know about their patients), by contacting the ACHD registrar or by contacting a specialist nurse on x3338 or on their mobile via switchboard. For urgent advice contact the on call: 07931 177392. For less urgent advice email: ACHDconsult@uhl-tr.nhs.uk.

You are encouraged to learn more about ACHD, an expanding and fascinating subspecialty of adult cardiology, by attending the EMCHC MDT on a Wednesday morning (8-10am) and the catheter lab on Tuesdays and Fridays.

Elective ACHD Admissions

All interventions are performed under GA unless otherwise indicated. Patients therefore need to be clerked with particular attention to their fitness for a GA. Do they have evidence of, for instance, coronary or respiratory disease? Is there a history of recent chest infections?

For female patients please ask date of LMP and check if there is any possibility of pregnancy. This must be documented in the notes for XR / medico-legal reasons. If they are uncertain of LMP and are not using contraception, a pregnancy test must be performed.

Cyanotic and Fontan (single ventricle) Patients

Patients with cyanotic congenital heart disease and single ventricle should be given IV fluids overnight when NBM for any procedure. 1 litre of sodium chloride 0.9% over 12 hours should suffice. If late in the day, they should also have IV fluid. This improves access and haemodynamic stability as they are critically dependent on filling pressures for their circulation.
Vessel cannulation for catheter procedures

Femoral vein cannulation: This vein is cannulated for ASD / PFO / PDA closures / pulmonary valvuloplasty (7-12F) and percutaneous pulmonary valve implants (22Fr sheaths). Z-sutures may be used for venous closure. These are released 4 hours post procedure by cutting the suture and gently pulling the suture material out.

Femoral artery cannulation: The artery is cannulated in coarctation stenting (10-14F sheaths), PDA closures (9-12F sheaths) and pulmonary valvuloplasty and stent valve implants (6Fr). Angio-Seal, Perclose or Proglide devices may be used for arterial closure. A card will be issued to the patient when they are used.

Any previous problems with vessel cannulation should be documented from the procedure and femoral & pedal pulses palpated and documented. If there is a large haematoma, a thrill or bruit may indicate an arteriovenous fistula or pseudoaneurysm and vascular ultrasound should be obtained (see page 40). Groin scars should be noted and documented.

Blood Tests

All cases should have a group and save, FBC, U&E and INR with results documented in the notes.

Coarctation stent cases, valvuloplasty and percutaneous valve implant cases should be X-matched for 4 units (it takes 2 units to prime a bypass circuit). Some other cases are also X-matched and you will be advised by the consultant.

ASD Closures

Indication: significant shunt (RV volume overload, PVR <5 Woods units; paradoxical embolism). Not if Eisenmenger physiology/ PVR high). Access is usually via the femoral vein.

Post-procedure care:
- Bed rest - 4 hours.
- Start aspirin 75 mg OD and clopidogrel 75 mg OD pre-discharge for 3 months, then single agent for additional 3 months (6 months in total antiplatelet therapy).
- Re-start warfarin for patients with previous AF/PAF (INR 2·0 - 3·0).
- CXR / ECG / TTE in the morning - to be reviewed, and review findings documented in notes pre-discharge. Highest risk of embolisation is within 24 hours. The ECG is to examine the PR interval and rule out heart block caused by the device impinging on the AV node.

PFO closures (procedure as per ASD)

Indication: post MDT discussion (usually cryptogenic stroke in young person) Access is usually via the femoral vein.
Post-procedure care:

- Bed rest - 4 hours.
- Start **aspirin** 75 mg OD and **clopidogrel** 75 mg OD pre-discharge for 3 months, then single agent for additional 3 months (6 months in total antiplatelet therapy).
- Patients already taking **warfarin** - Restart **warfarin** that evening. **Warfarin** is continued for 3 – 6 months aiming for INR 2.0 - 3.0.
- Patients not on **warfarin**, start **aspirin** 75 mg OD and **clopidogrel** 75 mg OD for three months. Thereafter continue **clopidogrel** 75 mg OD. With the Helix device, **aspirin** 75 mg OD for 3 months may be used.
- ECG / TTE in the morning – as per ASD closures. If the PFO closure is performed in the morning, these tests can be done in the afternoon to facilitate same day discharge.

PDA closures

Indication: signs of LV volume overload; if PAP <2/3s systemic pressure or PVR <2/3s systemic pressure; continuous murmur. Not if Eisenmenger or exercise induced lower limb desaturation). Access is usually via the femoral vein.

Post-procedure care:

- Bed rest - 4 hours.
- CXR / ECG / TTE in the morning - to be reviewed, and review findings documented in notes pre-discharge.
Coarctation of the Aorta stenting

Indication: non-invasive pressure difference > 20 mmHg between upper and lower limbs and upper limb hypertension (> 140/90mmHg), pathological BP rise on exertion or significant LVH; if hypertensive and > 50 % aortic narrowing. Access is via the femoral artery.

Post-procedure care:
- Bed rest - 4 hours.
- Regular oral analgesia - chest pain is common after coarctation stenting but patients should be reviewed and examined if there is any pain as dissection must be excluded. Pain is more tearing in nature and felt from front through to the back. Be aware of unequal pulses.
- 12F-14F arterial puncture - close groin observations overnight. A Perclose or Proglide suture may have been used.
- AP & Lateral CXR / ECG / TTE following morning - examine stent position, and check for possible stent fractures.

Blood pressures should generally be measured in the right arm. There may be arch hypoplasia, former surgical subclavian flap repair meaning left axillary artery pulsations will be reduced and an incorrect measure of systemic pressure.

Pulmonary / Aortic valvuloplasty

Indication: post MDT discussion.

Pulmonary: if peak velocity > 4 m/s regardless of symptoms, systolic RVP > 80 mmHg (> 4·3 m/s) or less than this if symptoms/ decreased RV function

Aortic: severe AS and valve related symptoms, symptomatic exercise test (MDT discussion- should have valve surgery first line as adult?)

Femoral vein and femoral artery cannulation used respectively.
- Bed rest - 4 hours.
- CXR / ECG / TTE in the morning

DC cardioversion of ACHD cases

Management is the same as for adults without ACHD with the exception of patients with a single ventricle and Eisenmenger patients.

A senior anaesthetist should be present. Procedures with anaesthesia are responsible for about 25% of deaths in Eisenmenger syndrome whilst in hospital. Brief sedation may be preferred. Dropping systemic arterial pressure can exacerbate any right to left shunting and impair filling pressures which will be poorly tolerated. CVP monitoring at a constant level may be helpful.
Cyanotic Congenital Heart Disease and iron deficiency

These patients may be iron deficient despite their erythrocytosis. Red blood cell deformability decreases if the patient is iron deficient and traditional indices are not reliable eg MCV, reference Hb levels, ferritin. Hb should be higher than normal values due to their hypoxia. This reduced deformability predisposes to hyperviscosity syndrome (headaches/alter mental state/visual disturbance/tinnitus/dizziness) which occurs when viscosity increases so much that DO2 falls due to reduced flow despite high Hb levels. Higher Hct tolerated (> 70 %) as long as not Fe-deficient; hyperviscosity syndrome may occur at Hct < 65 % if they are Fe deficient.

Iron deficiency is a major independent risk factor for CVA in cyanotic ACHD patients due to this change in RBC deformability and increased risk of microvascular problems. This hyperviscosity increases the risks of thromboembolism; the patients are both at increased risk of bleeding and increased risk of clotting. Anticoagulation recommendations are thus difficult to generalise.

If transferrin sats are low (< 16 %) consider oral FeSO4 or iron infusion. Ferinject (ferric carboxymaltose), expressed in mg of elemental iron is used. 500 mg in 100 ml of sodium chloride 0-9% as IV infusion over at least 15 minutes. Team may decide to give 1000 mg in 250 ml sodium chloride 0-9% by IV infusion over at least 30 - 40 minutes. If the solution is too dilute it is not stable and in general should not have < 2 mg per ml). Caution if infection present, liver dysfunction, asthma or atopy, pregnancy or lactating.

Herceptin levels may be a better indicator than transferrin saturations but this test is not widely available.

Guide to timelines for Outpatient review & Investigations

Repaired ASD / VSD: OPA 3 - 4 years. TTE / ETT every 4 years.
Repaired TOF PR+: OPA 1 year. TTE / ETT every 1 year.
Repaired TOF PR-: OPA 2 years. TTE / ETT every 2 years.
Mustard / Senning / Systemic RV: OPA 12 - 18 months. TTE every 12-18 months. ETT every 2 years.
Cyanotics / PHT: OPA every 6-12 months. TTE every 12 months. ETT with oxygen sats every 12 months. FBC every 12 months.
Native CoA / Stented CoA/ repaired CoA: OPA / TTE every 12 - 18 months. ETT with RUL & RLL BP pre & post exercise every 2 years. MRI every 4 years.
Valvular heart disease: OPA / TTE / ETT every 6-18 months (depends on severity of lesion).

Marfan Diagnostic criteria

Marfan syndrome was discovered in 1896. The first diagnostic criteria came in 1956 and were revised in 1979. The Berlin criteria came in 1986 and were revised again to the Ghent criteria and then again in 2010 to the modified Ghent criteria in 1996 and then again in 2010. The modified Ghent Nosology for Marfan syndrome relies on seven rules:
In the absence of family history:

1. **Aortic Root Dilatation Z score ≥ 2 AND Ectopia Lentis = Marfan syndrome.** The presence of aortic root dilatation (Z-score ≥ 2 when standardized to age and body size) or dissection and ectopia lentis, allows the unequivocal diagnosis of Marfan syndrome, regardless of the presence or absence of systemic features except where these are indicative of Shprintzen Goldberg syndrome, Loeys-Dietz syndrome, or vascular Ehlers Danlos syndrome.

2. **Aortic Root Dilatation Z score ≥ 2 AND FBN1 = Marfan syndrome.** The presence of aortic root dilatation (Z ≥ 2) or dissection and the identification of a bona fide FBN1 mutation are sufficient to establish the diagnosis, even when ectopia lentis is absent.

3. **Aortic Root Dilatation Z score ≥ 2 AND Systemic Score ≥ 7pts = Marfan syndrome.** Where aortic root dilatation (Z ≥ 2) or dissection is present, but ectopia lentis is absent and the FBN1 status is either unknown or negative, a Marfan syndrome diagnosis is confirmed by the presence of sufficient systemic findings (≥ 7 points, according to a scoring system) confirms the diagnosis. However, features suggestive of Shprintzen Goldberg syndrome, Loeys-Dietz syndrome, or vascular Ehlers Danlos syndrome must be excluded and appropriate alternative genetic testing (TGFBR1/2, collagen biochemistry, COL3A1, and other relevant genetic testing when indicated and available upon the discovery of other genes) should be performed.

4. **Ectopia lentis AND FBN1 with known Aortic Root Dilatation = Marfan syndrome.** In the presence of ectopia lentis, but absence of aortic root dilatation / dissection, the identification of an FBN1 mutation previously associated with aortic disease is required before making the diagnosis of Marfan syndrome.

In the presence of family history:

5. **Ectopia lentis AND Family History of Marfan syndrome (as defined above) = Marfan syndrome.** The presence of ectopia lentis and a family history of Marfan syndrome (as defined in 1 - 4 above) is sufficient for a diagnosis of Marfan syndrome.

6. **A systemic score ≥ 7 points AND Family History of Marfan syndrome (as defined above) = Marfan syndrome.** A systemic score of greater than or equal to 7 points and a family history of Marfan syndrome (as defined in 1 - 4 above) is sufficient for a diagnosis of Marfan syndrome. However, features suggestive of Shprintzen Goldberg syndrome, Loeys-Dietz syndrome, or vascular Ehlers Danlos syndrome must be excluded and appropriate alternative genetic testing (TGFBR1/2, collagen biochemistry, COL3A1, and other relevant genetic testing when indicated and available upon the discovery of other genes) should be performed.

7. **Aortic Root Dilatation Z score ≥ 2 above 20 yrs. old, ≥ 3 below 20 yrs. old) + Family History of Marfan syndrome (as defined above) = Marfan syndrome.** The presence of aortic root dilatation (Z ≥ 2 above 20 years old, ≥ 3 below 20 years old) and a family history of Marfan syndrome (as defined in 1 - 4 above) is sufficient for a diagnosis of Marfan syndrome. However, features suggestive of Shprintzen Goldberg syndrome, Loeys-Dietz syndrome, or vascular Ehlers Danlos syndrome must be excluded and appropriate alternative genetic testing (TGFBR1/2, collagen biochemistry, COL3A1, and other relevant genetic
testing when indicated and available upon the discovery of other genes) should be performed.

Caveat: Without discriminating features of Shprintzen Goldberg syndrome, Loeys-Dietz syndrome, or vascular Ehlers Danlos syndrome - AND after TGFBR1/2, collagen biochemistry. COL3A1 testing if indicated – other conditions/genes will emerge with time.

Systemic score

Clinical manifestations of MFS in other organ systems were critically evaluated for their specificity and diagnostic utility based on expert opinion and the available literature. Several of the “minor” criteria from the old Ghent nosology were eliminated, but the most selective systemic features were included in the “systemic score”.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrist AND thumb sign</td>
<td>3</td>
</tr>
<tr>
<td>Wrist OR thumb sign</td>
<td>1</td>
</tr>
<tr>
<td>Pectus carinatum deformity</td>
<td>2</td>
</tr>
<tr>
<td>Pectus excavatum or chest asymmetry</td>
<td>1</td>
</tr>
<tr>
<td>Hindfoot deformity</td>
<td>2</td>
</tr>
<tr>
<td>Plain flat foot</td>
<td>1</td>
</tr>
<tr>
<td>Spontaneous pneumothorax</td>
<td>2</td>
</tr>
<tr>
<td>Dural ectasia</td>
<td>2</td>
</tr>
<tr>
<td>Protucio acetabulae</td>
<td>2</td>
</tr>
<tr>
<td>Scoliosis or thoracolumbar kyphosis</td>
<td>1</td>
</tr>
<tr>
<td>Reduced elbow extension</td>
<td>1</td>
</tr>
<tr>
<td>3 of 5 facial features</td>
<td>1</td>
</tr>
<tr>
<td>Skin striae</td>
<td>1</td>
</tr>
<tr>
<td>Severe myopia</td>
<td>1</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
<td>1</td>
</tr>
<tr>
<td>Reduced upper segment / lower segment & increased arm span / height</td>
<td>0</td>
</tr>
</tbody>
</table>

(Online calculators available to score: http://www.marfan.org/dx/score)

A score of ≥ 7 is considered a positive systemic score.
CARDIAC ASSESSMENT PRIOR TO NON-CARDIAC SURGERY

Not infrequently cardiologists are asked by surgical specialties to provide pre-operative assessment of patients with known or suspected cardiac disease. This is a challenging and controversial field which still requires on-going studies to provide the best advice. The following is based heavily on the latest ESC guidance published in 2014 (https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/ESC-ESA-Guidelines-on-non-cardiac-surgery-cardiovascular-assessment-and-management).

It is also important to emphasise that the pre-operative risk assessment is a multidisciplinary process which should also involve anaesthetists, surgeons and, if appropriate, geriatricians.

Various risk calculators are available online and should help guide whether further cardiovascular assessment or interventions are required prior to surgery.

For estimation of the perioperative risk of myocardial infarction or cardiac arrest:
http://www.surgicalriskcalculator.com/miocardiacarrest

The revised cardiac risk index (RCRI), sometimes referred to as the Lee index, was published in 1999 and has been used worldwide since then. It calculates overall risk of a ‘major cardiovascular event after surgery’:
http://www.mdcalc.com/revised-cardiac-risk-index-for-pre-operative-risk/

One of the more sophisticated risk calculators is the National Surgical Quality Improvement Program perioperative myocardial infarction and cardiac arrest risk calculator:
https://riskcalculator.facs.org/RiskCalculator/PatientInfo.jsp

Many patients with stable heart disease can undergo low and intermediate risk surgery without cardiac evaluation (see following table). Patients who should always be assessed (but elective surgery deferred) are those with unstable coronary syndromes, decompensated new or worsening heart failure, significant arrhythmias and those with severe valve disease (aortic stenosis with AVA < 1 cm² or mean gradient ≥ 40 mmHg, symptomatic mitral stenosis).

More generally those with a higher risk of cardiovascular events are those with a history of ischaemic heart disease, previous PCI, heart failure, arrhythmias, valvular heart disease, systemic or pulmonary hypertension.

Patient’s exercise capacity is a useful for risk stratification as the inability to walk up a hill or two flights of stairs (4 METs equivalent) is associated with a 2-fold increased risk of perioperative complications.

Exertional chest pain, dyspnœa, palpitations, recent syncope and abnormal examination findings (murmurs, oedema etc) may indicate cardiovascular disease in those with no history.

It is well established that different types of surgery are associated with different degrees of risk and those with low risk surgery rarely require cardiovascular assessment beforehand.

Vascular (7·7%), thoracic (6·5%), transplant (6·2%) and general surgeries (3·9%) are associated with the highest risk; risk may be lowered by the use of minimally invasive, laparoscopic and endovascular techniques.

The following table is a rough guide to risk associated with types of surgery.
Surgical risk assessment by type of surgery.

<table>
<thead>
<tr>
<th>LOW RISK < 1%</th>
<th>INTERMEDIATE RISK 1-5%</th>
<th>HIGH RISK >5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial or cosmetic surgery</td>
<td>Intra-peritoneal: splenectomy, Hiatus hernia, cholecystectomy</td>
<td>Aortic and major vascular surgery</td>
</tr>
<tr>
<td>Breast</td>
<td>Symptomatic carotid (CEA)</td>
<td>Open lower limb revasc or amputation / thrombectomy</td>
</tr>
<tr>
<td>Dental</td>
<td>Peripheral angioplasty</td>
<td>Duodeno-pancreatic surgery</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Endovascular AAA repair</td>
<td>Liver resection, bile duct surgery</td>
</tr>
<tr>
<td>Eye</td>
<td>Head and neck surgery</td>
<td>Oesophagectomy</td>
</tr>
<tr>
<td>Asymptomatic carotid (CEA)</td>
<td>Hip or spine surgery</td>
<td>Repair of perforated bowel</td>
</tr>
<tr>
<td>Minor gynaecology</td>
<td>Urology or gynaecology major</td>
<td>Adrenal resection</td>
</tr>
<tr>
<td>Minor orthopaedic</td>
<td>Neurosurgery</td>
<td>Transplant</td>
</tr>
<tr>
<td>Minor urology (TURP)</td>
<td>Intra-thoracic non-major</td>
<td>Pneumonectomy</td>
</tr>
</tbody>
</table>

Cardiac complications after surgery depend on patient related risk factors, the surgery and the urgency. Surgical related factors include invasiveness, duration, blood loss and fluid shifts. All surgery elicits a stress response. Some surgery can also alter the balance between prothrombotic and fibrinolytic factors. There are also anaesthetic considerations.

Vascular Procedures

These carry the highest cardiac risk. Generally speaking endovascular procedures carry a lower cardiac risk than open vascular procedures.

For those at low or intermediate risk, especially for patients are on *β*-blockers, non-invasive stress testing is of little value. If it is not going to change the management, it should not be undertaken in patients deemed high risk. The main issue is that there is no evidence that revascularisation improves outcomes in patients with stable coronary disease.

Optimisation of medical therapy has a greater impact than coronary revascularisation in preventing MI in asymptomatic patients. Optimal therapy not only includes the use of *β*-blockers but things like control of hypertension, glycaemic control, smoking cessation, antiplatelets and perhaps most importantly, the use of statins.

There is some evidence that in those patients already established on them, that *β*-blockers may reduce risk. Randomised studies however suggest that the routine use of perioperative *β*-blockers is of no benefit in all higher risk patients. Patients already taking *β*-blockers should however continue treatment during the perioperative period in the absence of bradycardia or hypotension.

A number of trials, both retrospective and prospective have suggested a significant benefit of employing statins in patients undergoing vascular surgery. Statins should
be employed as soon as possible before surgery and continued in the perioperative period as there is some evidence that abrupt discontinuation may be harmful.

The use of antiplatelets has to be balanced against the bleeding risk of the surgical procedure. For patients with previous coronary stents see later.

Open Versus Laparoscopic Procedures

Compared with open surgery, cardiac risk in patients with heart failure is not reduced in patients undergoing laparoscopy, and both should be evaluated in the same way. This is a consequence of the impact of the pneumoperitoneum on the vascular system. In patients with coronary disease a laparoscopic procedure may be marginally safer because of the reduced stress of the procedure and propensity to reduced blood loss. This may be particularly true in the elderly.

Thoracic surgery

Determination of functional capacity is a pivotal step in the pre-operative cardiac risk assessment in patients undergoing thoracic surgery but not in other forms of non-cardiac surgery. The greater the functional capacity, the lower the risk and is measured in metabolic equivalents (METs).

One MET equals the basal metabolic rate. Exercise testing provides an objective assessment of functional capacity. Without testing, functional capacity can be estimated from the ability to perform the activities of daily living. One MET represents metabolic demand at rest; climbing two flights of stairs demands 4 METs, and strenuous sports, such as swimming, 10 METS. The inability to climb two flights of stairs or run a short distance (< 4 METs) indicates poor functional capacity and is associated with an increased incidence of post-operative cardiac events.

Cardiac Investigations

Generally speaking a 12 lead ECG is only of value in patients with risk factors undergoing intermediate or high risk surgery. It is useful however to compare with a post-operative ECG if an event occurs.

A transthoracic echo is reasonable to consider in patients undergoing high risk surgery, particularly in those with moderate or severe valvular heart disease who have not had an echo within 6-12 months) or in patients with new clinical signs of valve disease. Pre-operative LV systolic dysfunction, moderate-to-severe mitral regurgitation, hypertrophic cardiomyopathy and increased aortic valve gradients are associated with major cardiac events.

Treadmill testing is of limited value (especially in those with a poor exercise capacity) although gives an idea of functional status - which is itself related to perioperative risk in thoracic surgical procedures (see above). For other non-cardiac procedures, functional status is of limited value apart from when functional status is excellent. For the latter group, prognosis is excellent even in the presence of coronary disease.

A more accurate evaluation of ischaemia is of course achieved with functional imaging (MPS, DES, stress perfusion CMR). The problem is that, although you can identify patients at higher risk (those with a higher ischaemic burden), there is little evidence that revascularisation is of benefit.

The indications for performing coronary angiography should generally be made using the same criteria as for patients in a non-surgical setting.
Surgery in patients who have had previous PCI

Elective surgery should be postponed for a minimum of 4 weeks and ideally for up to 3 months after elective BMS implantation. Importantly, whenever possible, aspirin should be continued throughout surgery (for all stents).

For the newer generation DES, DAPT no longer has to continue for 12 months. The general aim should be to continue DAPT for 3-6 months after new DES implants, but to continue ideally for a year following a presentation with ACS (including when a BMS has been employed). Again, wherever possible, aspirin should not be stopped.

Clearly the risk of acute stent thrombosis needs to be weighed against the risk of postponing surgery. The longer the time after PCI, the lower the perioperative risk.

Elective surgery should be delayed for at least 60 days after MI.

Surgery in patients on warfarin

In patients who require continued anticoagulation (mechanical heart valves; recent mitral valve repair, ≤ 3 months; recent venous thromboembolism ≤ 3 months or thrombophilia), stopping anticoagulation is dangerous. Bridging therapy with either UFH or therapeutic LMWH is indicated. In patients on warfarin, the drug should be stopped 3 - 5 days before surgery with daily INR levels, and UFH or LMWH commenced when the INR is < 2. Generally LMWH should be started about 48 hours after the last dose of warfarin. The INR should be < 1.5 for surgery. Enoxaparin is the LMWH of choice and should be administered in therapeutic doses (100 IU/kg BD).

LMWH should be omitted 24 hours before surgery.

In patients with atrial fibrillation stopping anticoagulation before surgery is associated with a low risk of arterial thromboembolism and bridging therapy is associated with a higher risk of bleeding. Bridging therefore should only be used in the conditions listed above.

After surgery at least 12 hours should pass before bridging is recommenced. Warfarin can be started 1 - 2 days after surgery dependent on the haemostatic situation, with the pre-operative maintenance dose plus a boosting dose of 50% for the first two days. Bridging should continue until therapeutic INR levels are achieved.

For the DOACs, the recommendation is to stop DOACs for 2 - 3 times their respective biological half-lives prior to surgery in surgical interventions with ‘normal’ bleeding risk, and 4 - 5 times the biological half-lives before surgery in surgical interventions with high bleeding risk. The median half-life of rivaroxaban is 7-11 hours (marginally longer in the elderly), for apixaban is 12 hours, for dabigatran is 12-14 hours. Bridging is often unnecessary unless surgery is likely to be delayed for several days and thrombotic risk is high. Because of their rapid onset of action, recommencement should be after at least 1 - 2 days and possibly longer if bleeding risk is high.

Revascularisation prior to planned surgery

As stated previously, there is no difference in terms of the decision to arrange revascularisation between patients undergoing surgery and those in the non-surgical setting. The CARP study published in 2004 found that prophylactic revascularisation before vascular surgery did not improve outcomes.
In a more recent meta-analysis, asymptomatic patients or those with stable coronary disease, prophylactic coronary angiography - and, if needed, revascularisation before non-cardiac surgery does not confer any beneficial effects as compared with optimal medical management in terms of perioperative mortality, myocardial infarction, long-term mortality, and adverse cardiac events.

Surgery in patients with heart failure

Patients with heart failure have a significantly higher per-operative risk. Optimisation of heart failure medications is crucial. NT-proBNP measurements can guide the level of risk and is further enhanced by acquiring a sample post-operatively. Pre-operative echo is not crucial if previous investigations have confirmed persistently poor LV function.

All heart failure medications should ideally be continued through surgery with very careful evaluation of fluid status and the avoidance of hypotension. Certainly β-blockers should be given whereas ACEI/ARBs may be omitted on the day of surgery taking the blood pressure into account. Minimal disruption to the normal regime is desirable dependent upon the haemodynamic status. Close attention to fluid balance is crucial.

Surgery in patients with severe valvular heart disease

In patients with severe aortic stenosis (as defined previously page 196), procedures should be performed under more invasive haemodynamic monitoring, avoiding rapid changes in volume status and heart rhythm as far as possible. In symptomatic patients, consideration to valve replacement prior to planned surgery is recommended. BAV is an option for severe aortic stenosis.

In patients with mitral stenosis avoidance of tachycardia and attentive attention to fluid status is important. New atrial fibrillation in this context can cause serious compromise. In asymptomatic patients with significant mitral stenosis and systolic pulmonary artery pressure > 50 mm Hg, and in symptomatic patients, intervention to the mitral valve (including balloon valvotomy) should be seriously considered.

In asymptomatic patients with severe aortic or mitral regurgitation, surgery is usually quite safe. Symptomatic patients - and those who are asymptomatic with severely impaired LVEF (<30%) - are at high risk. Optimisation of medication is indicated along with consideration of valve intervention before planned surgery.

Surgery in patients with pacemakers and ICDs

The use of unipolar electrocautery represents a significant risk, as the electrical stimulus from may inhibit 'demand' pacemakers, or may reprogramme the pacemaker. These problems can be avoided or minimised by using bipolar electrocautery, correct positioning the ground plate for the electrical circuit, keeping the electrocautery device away from the pacemaker, giving only brief bursts, and using the lowest possible amplitude. The pacemaker should be set in an asynchronous or non-sensing mode in patients who are pacemaker-dependent. This is most easily done in the operating room by placing a magnet on the skin over the pacemaker.

Interference with the function of ICDs can also occur during non-cardiac surgery as a result of electrocautery. The ICD should be turned off during surgery and switched on in the recovery phase before discharge to the ward. The defibrillator function of an ICD can be temporarily deactivated by placing a magnet on the skin over the ICD.
While the device is deactivated, an external defibrillator should be immediately available.

Assessment of potential renal transplant patients

Patients with advanced renal failure, especially those with diabetes, are at high risk of IHD. In patients with multiple additional risk factors or documented disease, non-invasive testing is usually considered. DSE and MPS are the tests most commonly employed. DSE may be marginally better. Angiography remains the gold standard but in patients not yet undergoing dialysis the risk of precipitating the need for immediate dialysis is high. This needs to be explained carefully to the patient as they may wish to defer going onto the transplant list until they are undergoing dialysis.
For patients selected for in-patient cardiac surgery pre-operative management will usually be largely dictated by the cardiac surgeons themselves. A few issues need to be considered.

Many patients referred for bypass surgery will be taking antiplatelets. Most surgeons are happy to operate on patients taking aspirin, and many are happy with clopidogrel but ASK. Prasugrel is associated with significant bleeding risk and should definitely be discontinued for at least 4 - 5 days pre-op.

In patients on DAPT because of recent ACS, they should be started again after surgery (if stopped) and continued for 12 months. Graft patency does seem to be improved using ticagrelor and aspirin in some studies - even in stable patients.

Ensure patients are cross-matched for four units prior to surgery.

Many patients will require carotid duplex scans prior to surgery particularly those with a prior history of stroke/TIA or with carotid bruits. A carotid stenosis of 50-69% or greater should be considered for endarterectomy, over 70% endarterectomy is generally recommended. In asymptomatic patients, men with bilateral 70-99% stenoses should be discussed with vascular surgery.

Patients referred for valve surgery should have their dental hygiene status reviewed.

The risks of cardiac surgery obviously need to be discussed with patients. A risk score (EuroSCORE II) is also available online: http://www.euroscore.org/calc.html. An alternative is the STS risk score: http://riskcalc.sts.org/stswebriskcalc/#/calculate.

Post-operative atrial fibrillation

Atrial fibrillation (AF) occurs quite commonly following cardiac surgery and is associated with increased LOS and a poorer long-term prognosis. Risk factors include: increasing age, previous history of AF, mitral valve disease (particularly mitral stenosis), increased left atrial size or cardiomegaly, COPD, diabetes, Caucasian race, obesity, absence of β-blockers or ACEI treatment (or withdrawal of previous treatment), severe right coronary artery stenosis, hypokalaemia and hypomagnesaemia.

AF occurs in 15 to 40% of patients in the early postoperative period following CABG, in 37 to 50% after valve surgery, and in as many as 60% undergoing valve replacement plus CABG. The incidence increases with increasing age.

Atrial arrhythmias occur most often within the first few days after surgery. Almost half of patients with AF had more than one episode. Among patients with post-op AF who have no prior history of atrial arrhythmias, the AF is usually self-limited, as 15 to 30% convert within two hours and up to 80% in 24 hours. The mean duration of AF in one report was 11 to 12 hours and more than 90% are in sinus rhythm six to eight weeks following surgery.

AF may also occur late after cardiac surgery and the incidence is likely higher than appreciated because many patients may have continued asymptomatic episodes of AF. Atrial flutter is relatively uncommon compared to AF.

β-blocker administration is the most widely used prophylactic strategy based on numerous studies showing benefit, ease of use, and cost considerations. The benefit is seen when β-blockers are begun prior to or immediately after surgery.
The optimal duration of therapy for prevention of postoperative atrial arrhythmias is uncertain. However, many patients who undergo CABG have a clear indication for the long-term use of β-blocker therapy (eg, previous MI, LVSD, or hypertension).

While prevention with β-blockers lowers the risk of postoperative AF, many patients still develop AF. Initial management should include correction of predisposing factors such as hypoxaemia, electrolyte abnormalities, and haemodynamic instability as well as pain management and withdrawal of stimulating factors such as inotropic agents. Subsequent management relates to the issues of rate control, cardioversion, and anticoagulation.

Given the transient nature of the arrhythmia, initial control of the ventricular response rate is an effective and relatively safe strategy, compared to early cardioversion, in patients who develop postoperative AF. Rate control is most commonly achieved with β-blockers. Slowing of the ventricular rate in many AF patients receiving inotropic agents post-op can be achieved by lowering the dose or discontinuation of these agents. The optimal rate goal is a ventricular rate of less than 100-110 bpm will prevent symptoms such as palpitations and allow for optimal cardiac performance.

Cardioversion from well tolerated postoperative AF is usually not necessary because of the high early recurrence rate and the eventual self-limited course. Cardioversion may be indicated in highly symptomatic patients or in those when rate control is difficult to achieve. In addition, cardioversion in asymptomatic patients may be reasonable when well tolerated AF occurs near the time of anticipated hospital discharge or when it does not spontaneously terminate within 24 hours, so that oral anticoagulation can be avoided. Amiodarone is over used in this setting.

For patients with multiple episodes of AF or where AF persists for more than 24 hours, anticoagulation is indicated.
DRIVING AND CARDIOVASCULAR DISEASES

In the following tables, Group 1 entitlement refers to an ordinary driving licence (car and motorcycle), Group 2 entitlement refers to HGV/PSV (bus and lorry) driving. The following guidelines were as stated on the official government website last updated in March 2020. If there is any doubt about a patient's eligibility to drive, the patient should be advised to contact the DVLA Medical Adviser.

Website: https://www.gov.uk/government/publications/assessing-fitness-to-drive-a-guide-for-medical-professionals

EXERCISE TESTING

Exercise evaluation for DVLA purposes shall be performed on a bicycle* or treadmill. Drivers should be able to complete 3 stages of the standard Bruce protocol or equivalent safely, free from signs of cardiovascular dysfunction (angina, syncope, hypotension, sustained VT, and/or ST segment shift which accredited medical opinion interprets as being indicative of ischaemia (usually > 2 mm horizontal or down-sloping) during exercise or the recovery period. In the presence of established coronary disease, exercise evaluation shall be required at regular intervals not to exceed 3 years.

* Cycling for 10 minutes with 20 watt increments/minute to a total of 200W

Medication no longer needs to be discontinued for the test.

Should atrial fibrillation develop de novo during exercise testing, the licensing requirements will be the same as for individuals with pre-existing atrial fibrillation – that is, provided all the DVLA exercise tolerance test criteria above are met, licensing will be subject to echocardiogram and confirmation of left ventricular ejection fraction of at least 40%.

STRESS MYOCARDIAL PERFUSION SCAN OR STRESS ECHOCARDIOGRAPHY

When the DVLA requires these imaging tests, the relevant licensing standards are as follows, provided the LV ejection fraction is 40% or more:

- no more than 10% of the myocardium is affected by reversible ischaemic change on myocardial perfusion imaging or
- no more than one segment is affected by reversible ischaemic change on stress echocardiography.

CORONARY ANGIOGRAPHY

For licensing purposes, the DVLA considers functional implication to be more predictive than anatomical findings in coronary artery disease. ‘Predictive’ refers to the risk of an infarct within 1 year. Grafts are considered as ‘coronary arteries’.

For this reason, exercise tolerance testing and, where necessary, myocardial perfusion imaging or stress echocardiography are the investigations of relevance (outlined above) with the standards as indicated to be applied.

Angiography is therefore not commissioned by the DVLA.

If there is a conflict between the results of the functional test and a recent angiography, the case will be considered individually. Licensing will not normally be
granted, however, unless the coronary arteries are unobstructed or the stenosis is not flow-limiting. The LV ejection fraction must also be at least 40%.

HYPERTROPHIC CARDIOMYOPATHY AND EXERCISE TOLERANCE TESTING

For the purpose of assessing hypertrophic cardiomyopathy, the DVLA would consider an exercise tolerance test (see above) falling short of 9 minutes acceptable provided:

- there is no obvious cardiac cause for stopping the test in under 9 minutes
- there is a rise of at least 25mm Hg in systolic blood pressure during exercise testing
- all other requirements are met as outlined under hypertrophic cardiomyopathy

MARFAN SYNDROME: AORTIC ROOT REPLACEMENT

The DVLA will refuse or revoke a licence if there has been:

- emergency aortic root surgery
- elective aortic root surgery associated with complications or high risk factors – for example, aortic root, valve and arch (including de-branching) surgery, external aortic support operation. A bus or lorry licence for annual review may be issued in elective aortic root replacement surgery provided:
 - surgery is successful without complications
 - there is satisfactory regular specialist follow-up
 - no evidence of suture-line aneurysm postoperatively and on 2-yearly MRI or CT surveillance following valve-sparing surgery for root replacement plus valve replacement.

SEVERE AORTIC STENOSIS

‘Severe’ is defined (European Society of Cardiology guidelines) as:

- aortic valve area – less than 1 cm² or – less than 0.6 cm²/m² body surface area (BSA)
- mean aortic pressure gradient – greater than 40mmHg
- maximum jet velocity – greater than 4 metres/second.

KEY:

- Must not drive
- Might be allowed to drive subject to medical advice and/or notifying the DVLA
- May drive and need not notify the DVLA
<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
</table>
| **ANGINA** | Must not drive when symptoms occur:
- at rest
- with emotion
- at the wheel
Driving may resume after satisfactory symptom control.
Need not notify the DVLA. | Must notify the DVLA. Must not drive when symptoms occur.
A licence will be refused or revoked if symptoms continue (treated or untreated).
May be relicensed/licensed (provided there is no other disqualifying condition) if:
- no angina for at least 6 weeks
- the requirements for exercise or other functional tests can be met |
| **PCI (elective)** | Must not drive for at least 1 week but need not notify the DVLA.
Driving may resume after 1 week provided there is no other disqualifying condition. | Must not drive and must notify the DVLA.
Licence will be refused or revoked.
May be relicensed/licensed after at least 6 weeks if:
- the requirements for exercise or other functional tests can be met
- there is no other disqualifying condition. |
| **ACUTE CORONARY SYNDROMES including MYOCARDIAL INFARCTION** | Must not drive but need not notify the DVLA.
Driving may resume 1 week after ACS if successful coronary angioplasty and if:
- no other urgent revascularisation planned (urgent means within 4 weeks of acute event)
- LV ejection fraction is at least 40% before hospital discharge
- there is no other disqualifying condition.
If not treated by successful coronary angioplasty, driving may resume only after 4 weeks from the acute event, provided there is no other disqualifying condition. | Must not drive and must notify the DVLA – for all ACS.
Licence will be refused or revoked.
May be relicensed/licensed after at least 6 weeks if:
- the requirements for exercise or other functional tests can be met
- LV ejection fraction is at least 40%
- there is no other disqualifying condition. |
| **CABG** | Must not drive for at least 4 weeks but need not notify the DVLA.
Driving may resume after 4 weeks provided there is no other disqualifying condition. | Must not drive and must notify the DVLA.
Licence will be refused or revoked.
May be relicensed/licensed after 3 months if:
- LV ejection fraction is at least 40%
- the requirements for exercise or other functional tests can be met at least 3 months postoperatively
- there is no other disqualifying condition. |
For Group 2 licensing, if there is evidence of obstructive coronary artery disease on invasive or CT angiography or myocardial ischaemia on functional testing but it does not fall under any of the categories on the previous page, those individuals would need to meet the functional test requirements.

<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car and motorcycle</td>
<td>Bus and lorry</td>
</tr>
</tbody>
</table>

ARRHYTHMIA
- Must not drive if arrhythmia has caused or is likely to cause incapacity and may need to notify the DVLA.
- Driving may resume without DVLA notification only after:
 - underlying cause has been identified
 - arrhythmia is controlled for at least 4 weeks.
 - Must notify the DVLA if there are distracting or disabling symptoms.
- Must notify the DVLA. Must not drive if arrhythmia has caused or is likely to cause incapacity.
- Licence will be refused or revoked.
- May be relicensed/licensed (provided there is no other disqualifying condition) only after:
 - underlying cause has been identified
 - arrhythmia has been controlled for at least 3 months
 - LV ejection fraction is at least 40%.

PACEMAKER IMPLANT
- Must not drive for at least 1 week and must notify the DVLA of pacemaker implant (not box change).
- Driving may resume after 1 week provided there is no other disqualifying condition.
- Must not drive for at least 6 weeks and must notify the DVLA.
- Driving may resume after 6 weeks provided there is no other disqualifying condition.

SUCCESSFUL CATHETER ABLATION
- For arrhythmia causing or likely to cause incapacity
 - Must not drive for at least 2 days but need not notify the DVLA.
 - Driving may resume after 2 days provided there is no other disqualifying condition.
 - Must not drive for at least 2 weeks but need not notify the DVLA.
 - Driving may resume after 2 weeks provided there is no other disqualifying condition and LVEF > 40%.

SUCCESSFUL VT ABLATION
- For arrhythmia causing or likely to cause incapacity
 - Must not drive for at least 4 weeks but need not notify the DVLA.
 - Driving may resume after 4 weeks provided there is no other disqualifying condition.
 - Must not drive and must notify the DVLA.
 - May be relicensed/licensed (provided there is no other disqualifying condition) only after arrhythmia has been controlled for at least 3 months and LVEF > 40%.
| ICD implanted for sustained ventricular arrhythmia associated with incapacity |
|---|---|---|
| **GROUP 1** Car and motorcycle | **GROUP 2** Bus and lorry |
| **Without further sequelae** | Must not drive and must notify the DVLA.
Driving may resume after 6 months following implantation – except that any of the sequelae 1-3 below require further specific restrictions and may require notification to the DVLA. | Must not drive and must notify the DVLA.
Licence will be refused or revoked permanently. |
| **1. With any shock therapy and/or symptomatic anti-tachycardia pacing** | If therapy delivery was due to an inappropriate cause such as atrial fibrillation or programming issues driving may resume 1 month after complete control of any cause to the satisfaction of the cardiologist, and the DVLA need not be notified.
If therapy delivery was appropriate due to sustained ventricular tachycardia or ventricular fibrillation, the DVLA must be notified and driving may resume 6 months after the event provided:
• preventive steps against recurrence have been taken with anti-arrhythmic drugs, an ablation procedure, or ICD programming alteration and
• there is an absence of further shock therapy and/or anti-tachycardia pacing associated with incapacity or likely to cause incapacity. Otherwise, must not drive for 2 years and must notify the DVLA. | Must not drive and must notify the DVLA.
Licence will be refused or revoked permanently. |
| **2. With any revision of electrodes or anti-arrhythmic drug treatment** | Must not drive for 1 month but need not notify the DVLA.
Driving may resume 1 month after electrode revision or drug alteration provided there is no other disqualifying condition | Must not drive and must notify the DVLA.
Licence will be refused or revoked permanently. |
| **3. With defibrillator box change** | Must not drive for 1 week but need not notify the DVLA.
Driving may resume 1 week after box change. | Must not drive and must notify the DVLA.
Licence will be refused or revoked permanently. |
<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car and motorcycle</td>
<td>Bus and lorry</td>
</tr>
</tbody>
</table>

ICD implanted for sustained ventricular arrhythmia NOT associated with incapacity

- Must not drive for 1 month following implantation and must notify the DVLA.

 Driving may resume 1 month after implantation provided:
 - presentation was a ‘non-disqualifying’ cardiac event – i.e. haemodynamically stable sustained ventricular tachycardia without incapacity
 - LV ejection fraction is greater than 35%
 - no fast ventricular tachycardia (VT) induced on EP study – i.e. RR interval of less than 250 milliseconds
 - during the post implantation study, any induced VT could be pace terminated by the ICD twice, without acceleration.

 If any of the above not met, must not drive for 6 months following implantation

Note: should ICD subsequently deliver shock therapy and/or antitachycardia pacing associated with or likely to cause incapacity (except during normal clinical testing), the DVLA must be notified and relevant restrictions must be applied as detailed under the heading ‘ICD implanted for sustained ventricular arrhythmia associated with incapacity’.

- Must not drive and must notify the DVLA.

 Licence will be refused or revoked permanently.
<table>
<thead>
<tr>
<th>Prophylactic ICD</th>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
</table>
| In asymptomatic individuals with a high risk of significant arrhythmia | Must not drive for 1 month following implantation and must notify the DVLA:
- driving may resume 1 month after implantation if remain asymptomatic and no ICD therapy needed
- should the ICD subsequently deliver symptomatic anti-tachycardia pacing and/or shock therapy (except during normal clinical testing), the DVLA must be notified and the restrictions must be noted as for sustained ventricular arrhythmia associated with incapacity. | Must not drive and must notify the DVLA. Licence will be refused or revoked permanently. |
<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car and motorcycle</td>
<td>Bus and lorry</td>
</tr>
</tbody>
</table>

Hypertension

May drive and need not notify the DVLA, except:

Must not drive if diagnosed with malignant hypertension until condition has been effectively treated or controlled but need not notify DVLA. (Malignant hypertension: elevation in systolic blood pressure greater than or equal to 180 mm Hg or diastolic blood pressure greater than 110 mm Hg associated with evidence of progressive organ damage).

May drive and need not notify the DVLA, except:

Must not drive and must notify the DVLA if resting BP is consistently:

- 180mm Hg or higher systolic and/or
- 100mm Hg or more diastolic.

May be relicensed/licensed after BP is controlled, provided there are no side-effects from treatment that affect or are likely to affect safe driving.

Peripheral arterial disease

May drive and need not notify the DVLA.

There must be no other disqualifying condition.

May drive but must notify the DVLA.

May be relicensed/licensed only if:

- there is no symptomatic myocardial ischemia, and
- the exercise or other functional test requirements can be met.

Aortic aneurysm – ascending or descending thoracic and/or abdominal

May drive and need not notify the DVLA if aneurysm diameter is **less than 6cm**.

May drive but must notify the DVLA if aneurysm diameter is **between 6cm and 6.4cm**.

May be relicensed/licensed subject to annual review.

Must not drive and must notify the DVLA if aneurysm diameter is **6.5cm or greater**.

Licence will be refused or revoked.

May be relicensed/licensed after successful surgical treatment without evidence of further enlargement and no other disqualifying condition.

In cases of bicuspid aortopathy, maximum aortic diameter should be less than 6.5cm.

May drive if the aneurysm diameter is **less than 5.5cm**. Must notify the DVLA.

Note: the exercise or other functional test requirements will need to be met in all cases of abdominal aortic aneurysm irrespective of the diameter.

Must not drive and must notify the DVLA if the aneurysm diameter is **greater than 5.5cm**.

Licence will be refused or revoked.

May be relicenced/licensed after successful surgical treatment without evidence of further enlargement and no other disqualifying condition.

Note: the exercise or other functional test requirements will need to be met in case of abdominal aortic aneurysm.

In cases of bicuspid aortopathy, maximum aortic diameter should be less than 5.5cm provided there is no associated aortic coarctation, systemic hypertension, family history of aortic dissection and aneurysmal growth no greater than 3mm per annum. If any of the above apply, the maximum aortic diameter allowed would be less than 5cm.
| Chronic aortic dissection | Must not drive. Must notify the DVLA if aortic diameter greater than 6cm. Driving may resume only after satisfactory surgical intervention and/or:
• satisfactory medical therapy (blood pressure well controlled)
• medical follow-up
• no other disqualifying condition.
If aortic diameter is 6 cm or greater, the driving restrictions given under aortic aneurysm (see above) must take effect, with the DVLA notified. | Must not drive and must notify the DVLA. Licence will be refused or revoked. May be relicensed/licensed only after satisfactory surgical intervention and/or all the following are met:
• satisfactory medical therapy (blood pressure well controlled)
• if chronic aortic dissection maximum transverse diameter of the aorta is less than 5.5cm (including the false lumen/thrombosed segment)
• complete thrombosis of the false lumen
• medical follow up in place. |
| Marfan syndrome and other inherited aortopathies | May drive and need not notify the DVLA if no aneurysm. If there is an aortic aneurysm must notify the DVLA and must not drive if aortic diameter greater than 5cm. | Must notify the DVLA. Must not drive if maximum aortic diameter greater than 5cm or associated with severe aortic regurgitation. Licence will be revoked/ refused. Relicensing will be considered only if:
• maximum aortic diameter is less than 5cm
• no family history of aortic dissection
• no severe aortic regurgitation
• is under annual cardiac review to include aortic root measurement. If there is a family history of dissection, relicensing will only be allowed if aortic diameter is less than 4.5cm.
For aortic root replacement, driving may be relicensed after an individual assessment. |
<table>
<thead>
<tr>
<th></th>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Car and motorcycle</td>
<td>Bus and lorry</td>
</tr>
<tr>
<td>NOTE: the DVLA bars Group 2 bus and lorry licensing whenever left ventricular ejection fraction is less than 40%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Dilated cardiomyopathy – asymptomatic**
(See also arrhythmia, pacemaker, ICD and heart failure sections) | May drive and need not notify the DVLA. There must be no other disqualifying condition. | May drive but must notify the DVLA. There must be no other disqualifying condition and LV EF must be > 40%. |
| **Dilated cardiomyopathy – symptomatic**
(See also arrhythmia, pacemaker, ICD and heart failure sections) | May drive and need not notify the DVLA. There must be no other disqualifying condition (must meet all other standards e.g. angina, arrhythmia). | Must not drive and must notify the DVLA. Driving may be relicensed if there is no other disqualifying condition and LV EF is > 40%. |
| **Hypertrophic cardiomyopathy (HCM) - asymptomatic**
(See also arrhythmia, pacemaker and ICD sections) | May drive and need not notify the DVLA. There must be no other disqualifying condition. | Must not drive and must notify the DVLA. |
| | | Must not drive if in the High Risk group (as per ESC HCM Risk-SCD calculator) and/or if ICD is indicated/implanted. If in the Low Risk or Intermediate Risk group licensing will be permitted if the exercise tolerance test requirements are met with at least a 25mm Hg increase in systolic blood pressure during exercise testing (testing to be repeated every 3 years) |
| **Hypertrophic cardiomyopathy (HCM) – symptomatic**
(See also arrhythmia, pacemaker and ICD sections) | May drive and need not notify the DVLA. There must be no other disqualifying condition (must meet all other relevant standards e.g. angina, arrhythmia). | Must not drive and must notify the DVLA. Licence will be refused or revoked. Relicensing will be considered once symptoms are satisfactorily controlled and the criteria for asymptomatic HCM met as detailed above. If there is a history of associated syncope the standards for syncope need to be met in addition. |
<table>
<thead>
<tr>
<th>GROUP 1 Car and motorcycle</th>
<th>GROUP 2 Bus and lorry</th>
</tr>
</thead>
</table>
| **Arrhythmogenic right ventricular cardiomyopathy – and allied disorders** | **Asymptomatic:** Must not drive and must notify the DVLA.
May be relicensed/licensed following specialist EP assessment, provided there is no other disqualifying condition.
Relicensing may be permitted if:
• the applicant is on treatment
• the applicant has remained asymptomatic for a period of 1 year
• the applicant remains under regular specialist electrophysiological review.
A 1–3 year licence may be considered if the specialist electrophysiological review is satisfactory. |
| **Symptomatic:** Must not drive and must notify the DVLA if arrhythmia has caused or is likely to cause incapacity.
May be relicensed/licensed once arrhythmia is controlled, provided there is no other disqualifying condition. | **Symptomatic:** Must not drive and must notify the DVLA. Licence will be refused or revoked.
Relicensing may only be considered if symptoms controlled and in NYHA I or II, and left ventricular ejection fraction is at least 40%.
Depending on likely cause for heart failure, exercise or other functional testing for heart failure may be required |

| **Heart failure** | **Asymptomatic (NYHA I):** May drive and need not notify the DVLA.
NYHA II: May drive if symptoms are stable and not likely to distract the driver or otherwise affect safe driving but need not notify the DVLA.
NYHA III: May drive if symptoms are stable and not likely to distract the driver or otherwise affect safe driving but need not notify the DVLA.
NYHA IV: Must not drive and must notify the DVLA. License will be refused/revoked. Relicensing can only be considered if symptoms controlled and in NYHA I, II or III. | **Asymptomatic (NYHA I):** May drive if EF > 40% but must notify the DVLA.
NYHA II: May drive if left ventricular ejection fraction is at least 40%, symptoms are stable and not likely to distract the driver or otherwise affect safe driving but must notify the DVLA.
NYHA III: Must not drive and must notify the DVLA. License will be refused/revoked. Relicensing can only be considered if symptoms controlled and in NYHA I or II, and left ventricular ejection fraction is at least 40%.
NYHA IV: Must not drive and must notify the DVLA. License will be refused/revoked. Relicensing can only be considered if symptoms controlled and in NYHA I or II, and left ventricular ejection fraction is at least 40%.
Depending on likely cause for heart failure, exercise or other functional testing for heart failure may be required |
<table>
<thead>
<tr>
<th>Group 1: Car and motorcycle</th>
<th>Group 2: Bus and lorry</th>
</tr>
</thead>
</table>
| **Left ventricular assist device implanted** | Must not drive and must notify the DVLA.
Driving may be relicensed under individual assessment only after 3 months from implantation. |
| **CRT pacemaker** | Must not drive and must notify the DVLA.
Driving may resume after at least 6 weeks following implantation if:
- LV EF is > 40%
- the requirements under heart failure section (see above) are met
- there is no other disqualifying condition. |
| **CRT defibrillator** | Must not drive and must notify the DVLA.
Licence will be refused or revoked permanently |
| **Heart transplant – including heart and lung transplant** | Must not drive for at least 6 weeks following surgery.
Need not notify the DVLA.
There must be no other disqualifying condition. |
| **Heart valve disease** | Asymptomatic:
May drive and need not notify the DVLA.
There must be no other disqualifying condition.

Symptomatic:
May drive and need not notify the DVLA.
There must be no other disqualifying condition. |
| **Asymptomatic:** | May drive and need not notify the DVLA.
There must be no other disqualifying condition.

Symptomatic:
Must not drive and must notify the DVLA.
Relicensing considered once asymptomatic and no other disqualifying conditions. If there is cerebral embolism, relicensing may be considered after 12 months following cardiological assessment. |
<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car and motorcycle</td>
<td>Bus and lorry</td>
</tr>
</tbody>
</table>

Heart valve surgery – including transcatheater aortic valve implantation and other cardiac or pulmonary percutaneous devices

- **Must not drive for at least 4 weeks but need not notify the DVLA.**
- **Driving may resume only after at least 4 weeks, provided there is no other disqualifying condition.**

- **Must not drive for at least 3 months and must notify the DVLA.**
- **May be relicensed/licensed only after at least 3 months, provided:**
 - no evidence of significant left ventricular impairment – that is, LV ejection fraction at least 40%
 - no ongoing symptoms
 - no other disqualifying condition.

Aortic stenosis (to include sub-aortic and supra-aortic stenosis)

Asymptomatic:
- May drive and need not notify the DVLA.

Symptomatic:
- Must not drive and must notify the DVLA.
- Licence will be refused or revoked pending assessment and treatment.

Asymptomatic:
- If mild to moderate aortic stenosis, may drive and need not notify DVLA.
- Must not drive and must notify the DVLA.
- If, although asymptomatic, aortic stenosis is severe, an annual review licence may be issued, provided:
 - the DVLA exercise tolerance test requirements from the are met
 - there is satisfactory medical follow-up.
- Licensing will be refused if:
 - during an exercise test symptoms develop, blood pressure falls or there is sustained arrhythmia
 - a cardiologist considers that exercise testing would be unsafe for the individual
 - a test is not possible for any other reason.

Symptomatic:
- Must not drive and must notify the DVLA.
- Licence will be refused or revoked pending assessment and treatment.

Congenital heart disease (CHD) –

Asymptomatic
- May drive and need not notify the DVLA if completely asymptomatic and does not fall under any other category which requires notification to the DVLA.

Asymptomatic
- May drive but must notify the DVLA.
- Licence will be refused or revoked if CHD is complex or severe.
- Otherwise, the DVLA may issue a licence subject to medical review at 1, 2 or 3 years, depending on specialist assessment and provided there is:
 - minor disease
 - successful repair of defects or relief of valvular problems, fistulae and so on
 - no other disqualifying condition.
<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary hypertension</td>
<td>Bus and lorry</td>
</tr>
<tr>
<td>Must notify the DVLA.</td>
<td>Must not drive and must notify the DVLA.</td>
</tr>
<tr>
<td>Low, intermediate risk category</td>
<td>Low risk category</td>
</tr>
<tr>
<td>May drive provided no other disqualifying condition. Review 3 year licence to be issued.</td>
<td>Driving may be allowed provided satisfactory specialist assessment and the risk of a sudden and disabling event is deemed to be less than 2% per annum; there should be no other disqualifying condition and syncope standards need to be met.</td>
</tr>
<tr>
<td>High risk category</td>
<td>Intermediate, high risk category</td>
</tr>
<tr>
<td>May drive provided satisfactory specialist assessment and the risk of a sudden and disabling event is deemed to be less than 20% per annum; there should be no other disqualifying condition and syncope standards need to be met.</td>
<td>Licence will be refused or revoked.</td>
</tr>
<tr>
<td>Review 1 year licence to be issued.</td>
<td>Classification of low, intermediate or high risk categories as per 2015 ESC/ ERS guidelines for the diagnosis and treatment of pulmonary hypertension.</td>
</tr>
<tr>
<td>Classification of low, intermediate or high risk categories as per 2015 ESC/ ERS guidelines for the diagnosis and treatment of pulmonary hypertension.</td>
<td>Specialist assessment report will be needed for the above risk assessment.</td>
</tr>
<tr>
<td>Specialist assessment report will be needed for the above risk assessment.</td>
<td></td>
</tr>
</tbody>
</table>

Congenital heart disease (CHD)	****
Symptomatic	****
Must not drive and must notify the DVLA.	Must not drive and must notify the DVLA.
Symptoms include angina, arrhythmias/palpitations, dyspnoea, uncontrolled hypertension, symptomatic heart failure, symptomatic heart valve disease.	Licence will be refused or revoked if CHD is complex or severe.
For patients with congenital heart disease who have had ablation, pacemaker including CRT, ICD, heart valve intervention (surgical or percutaneous) or percutaneous cardiac/pulmonary devices (ASD/ VSD/coarctation/MAPCAs/pulmonary systemic shunts etc). If symptoms develop after being asymptomatic or if fall under any other category which requires notification to the DVLA.	Otherwise, the DVLA may issue a licence subject to medical review at 1, 2 or 3 years, depending on specialist assessment and provided there is:
Individual assessment of symptomatic cases. Certain conditions may require a medical review licence to be issued for 1, 2, or 3 years.	• minor disease
The DVLA may require specialist assessment to issue a licence, which may be subject to medical review at 1, 2, or 3 years.	• successful cardiac or pulmonary intervention (percutaneous device or surgery)
There must be no disqualifying condition.	• no other disqualifying condition.
ECG abnormality – suspected myocardial infarction	GROUP 1
Car and motorcycle | GROUP 2
Bus and lorry |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>May drive and need not notify the DVLA.</td>
<td>Must not drive and must notify the DVLA. May be relicensed/licensed only after at least 3 months, provided:</td>
<td></td>
</tr>
<tr>
<td>There must be no other disqualifying condition.</td>
<td>• exercise or other functional test requirements from the DVLA are met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• there is no other disqualifying condition</td>
<td></td>
</tr>
<tr>
<td>Left bundle branch block</td>
<td>May drive and need not notify the DVLA.</td>
<td>May drive but must notify the DVLA.</td>
</tr>
<tr>
<td></td>
<td>There must be no other disqualifying condition.</td>
<td>May be relicensed/licensed if:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• myocardial perfusion scan or stress echocardiography requirements from the DVLA are met</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• there is no other disqualifying condition.</td>
</tr>
<tr>
<td>Pre-excitation</td>
<td>May drive and need not notify the DVLA. except:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If associated with arrhythmia must meet the relevant requirements.</td>
<td>There must be no other disqualifying condition.</td>
</tr>
<tr>
<td></td>
<td>There must be no other disqualifying condition.</td>
<td></td>
</tr>
<tr>
<td>Long QT syndrome</td>
<td>Must not drive if history of syncope or Torsades de pointes or QTc* greater than 500ms and must notify DVLA. Licence will be refused/revoked. Relicensing will be considered upon appropriate specialist cardiologist assessment and standards of syncope met.</td>
<td>Must not drive if symptomatic or history of syncope or Torsades de pointes or QTc* greater than 500ms and must notify DVLA. Licence will be refused/revoked. Relicensing may be considered once asymptomatic and upon appropriate specialist cardiologist assessment and standards of syncope met.</td>
</tr>
<tr>
<td></td>
<td>*corrected QT interval</td>
<td>*corrected QT interval</td>
</tr>
<tr>
<td></td>
<td>Must not drive if history of syncope possibly associated to Brugada syndrome or history of sudden aborted cardiac death and must notify DVLA. Licence will be refused/revoked. Relicensing will be considered upon appropriate specialist cardiologist assessment.</td>
<td>Must not drive if symptomatic or history of syncope possibly associated to Brugada syndrome or history of sudden aborted cardiac death and must notify DVLA. Licence will be refused/revoked permanently if history of syncope possibly associated to Brugada syndrome or history of sudden aborted cardiac death. Otherwise, relicensing may be considered once asymptomatic and upon appropriate specialist cardiologist assessment and standards of syncope met.</td>
</tr>
</tbody>
</table>

*corrected QT interval
<table>
<thead>
<tr>
<th>Loss of Consciousness (Solitary Episode)</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical vasovagal syncope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>While standing</td>
<td>May drive and need not notify the DVLA. Must not drive and must notify the DVLA.</td>
<td></td>
</tr>
<tr>
<td>While sitting</td>
<td>May drive and need not notify the DVLA if there is an avoidable trigger which will not occur whilst driving. Otherwise must not drive until annual risk of recurrence is assessed as below 20%. Must not drive for 3 months and must notify the DVLA. Will require investigation for identifiable and/or treatable cause.</td>
<td></td>
</tr>
<tr>
<td>Syncope with avoidable trigger whilst driving or otherwise reversible cause</td>
<td></td>
<td></td>
</tr>
<tr>
<td>While standing</td>
<td>May drive and need not notify the DVLA. Must not drive for 4 weeks. Driving may resume after 4 weeks only if the cause has been identified and treated. Must notify the DVLA if the cause has not been identified and treated.</td>
<td>Must not drive and must notify the DVLA. Must not drive for 3 months. Driving may resume after 3 months only if the cause has been identified and treated. Must notify the DVLA if the cause has not been identified and treated.</td>
</tr>
<tr>
<td>While sitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unexplained syncope, including syncope without reliable prodrome (no cardiac abnormality)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>While standing or sitting</td>
<td>Must not drive and must notify the DVLA. If no cause has been identified, the licence will be refused or revoked for 6 months.</td>
<td>Must not drive and must notify the DVLA. If no cause has been identified, the licence will be refused or revoked for 12 months.</td>
</tr>
<tr>
<td>Cardiovascular, excluding typical syncope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>While standing or sitting</td>
<td>Must not drive and must notify the DVLA. Driving may be allowed to resume after 4 weeks if the cause has been identified and treated. If no cause has been identified, the licence will be refused or revoked for 6 months.</td>
<td>Must not drive and must notify the DVLA. Driving may be allowed to resume after 3 months if the cause has been identified and treated. If no cause has been identified, the licence will be refused or revoked for 12 months.</td>
</tr>
<tr>
<td>Blackout with seizure markers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>While standing or sitting</td>
<td>Must stop driving and notify the DVLA. 6 months off driving from the date of the episode. If there are factors that would lead to an increased risk of recurrence, 1 year off driving would be required</td>
<td>Must stop driving and notify the DVLA. 5 years off driving from the date of the episode</td>
</tr>
</tbody>
</table>
LOSS OF CONSCIOUSNESS (RECURRENT EPISODES)

<table>
<thead>
<tr>
<th>Typical vasovagal syncope with identifiable consistent prodrome</th>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>While standing</td>
<td>May drive and need not notify the DVLA.</td>
<td>Must not drive and must notify the DVLA.</td>
</tr>
<tr>
<td>While sitting</td>
<td>Must not drive and must notify the DVLA. Must not drive until annual risk of recurrence is assessed as below 20%. May drive and need not notify the DVLA if there is an avoidable trigger which will not occur whilst driving. Otherwise must not drive until annual risk of recurrence is assessed as below 20%.</td>
<td>Must not drive and must notify the DVLA. Must not drive until annual risk of recurrence is assessed as below 2%. Must not drive and must notify the DVLA. Must not drive and must notify the DVLA. Will require investigation for identifiable and/or treatable cause.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syncope with avoidable trigger whilst driving or otherwise reversible cause</th>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>While standing</td>
<td>May drive and need not notify the DVLA.</td>
<td>Must not drive and must notify the DVLA.</td>
</tr>
<tr>
<td>While sitting</td>
<td>Must not drive for 4 weeks. Driving may resume after 4 weeks only if the cause has been identified and treated. Must notify the DVLA if the cause has not been identified and treated.</td>
<td>Must not drive for 3 months. Driving may resume after 3 months only if the cause has been identified and treated. Must notify the DVLA if the cause has not been identified and treated.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unexplained syncope, including syncope without reliable prodrome</th>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>While standing or sitting</td>
<td>Must not drive and must notify the DVLA. If no cause has been identified, the licence will be refused or revoked for 12 months.</td>
<td>Must not drive and must notify the DVLA. If no cause has been identified, the licence will be refused or revoked for 10 years.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiovascular, excluding typical syncope</th>
<th>GROUP 1</th>
<th>GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>While standing or sitting</td>
<td>Must not drive and must notify the DVLA. If there are factors that would lead to an increased risk of recurrence, then 1 year off driving would be required.</td>
<td>Must not drive and must notify the DVLA. Driving may resume after 3 months only if the cause has been identified and treated. If no cause has been identified, the licence will be refused or revoked for 12 months.</td>
</tr>
<tr>
<td>Blackout with seizure markers</td>
<td>Car and motorcycle</td>
<td>Bus and lorry</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>While standing or sitting</td>
<td>Must stop driving and notify the DVLA. Depending on previous medical history, the standards for isolated seizure or epilepsy will apply.</td>
<td>Must stop driving and notify the DVLA. Depending on previous medical history, the standards for isolated seizure or epilepsy will apply.</td>
</tr>
</tbody>
</table>

| Cough syncope or presyncope | Must not drive and must notify the DVLA. Must not drive for 6 months following a single episode and for 12 months following multiple episodes over 5 years. Reapplication may be considered earlier if all of the following can be satisfied:
 • any underlying chronic respiratory condition is well controlled
 • for smokers, reliable cessation of smoking has been achieved and will be continued after relicensing
 • body mass index is below 30
 • any gastro-oesophageal reflux is treated. | Must not drive and must notify the DVLA. Must not drive for 5 years from the date of the last episode. Reapplication may be considered after 1 year if all the following can be satisfied:
 • any underlying chronic respiratory condition is well controlled
 • for smokers, reliable cessation of smoking has been achieved and will be continued after relicensing
 • body mass index is below 30
 • any gastro-oesophageal reflux is treated
 • confirmation of these by a specialist doctor. |
Patients often ask how soon they can fly and the CAA (see useful links, page 14) and British Cardiac Society have issued guidelines.

When advising patients, reference to this guidance is helpful, but a common sense approach should apply. For many patients the reason for flying is for a holiday that may be best postponed until they have completed a period of convalescence and, in many cases, rehabilitation.

ANGINA

| CCS I - II | CCS III | CCS IV | No restriction | Consider in-flight O₂ | Defer until stable or needs escort and O₂ |

ACUTE CORONARY SYNDROMES including MYOCARDIAL INFARCTION

| Low risk: age < 65, first event, successful reperfusion, EF > 45%, no complications, no planned tests or interventions | Medium risk: EF > 40%, no symptoms of failure, no evidence of ischaemia or arrhythmia, no planned tests or interventions | High risk: EF < 40%, signs and symptoms of failure, those pending further tests, revascularisation or device therapy |

| Fly after 3 days | Fly after 10 days | Defer travel until condition stable |

ANGIOPLASTY (elective)

Fly after 2-3 days in most cases

CABG (elective)

Fly after 10-14 days if no complications. If symptomatic, follow guidance for specific symptoms

SYMPTOMATIC VALVULAR HEART DISEASE

Relative contraindication

ACUTE HEART FAILURE

Fly after 6 weeks if stabilised

CHRONIC HEART FAILURE

| NYHA I and II | NYHA III | NYHA IV | No restriction | May need in-flight O₂ | Advised not to fly without in-flight O₂ and airport assistance available |

RF ABLATION

Fly after 2 days but higher risk of DVT/PTE

PACEMAKER / ICD IMPLANT

Fly after 2 days if no pneumothorax. In the event of a pneumothorax, flying should be deferred for 2 weeks following complete resolution
TELEPHONE NUMBERS

WHERE FULL NUMBERS ARE GIVEN FOR UHL STAFF OR DEPARTMENTS, WHEN DIALING FROM WITHIN UHL, USE LAST FOUR RED DIGITS ONLY PRECEDED BY ‘1’.

CARDIOLOGY CONSULTANTS

<table>
<thead>
<tr>
<th>Secretary</th>
<th>Office</th>
<th>Mobile</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR ADLAM</td>
<td>0116 2583236</td>
<td>0116 2502480</td>
</tr>
<tr>
<td>DR ANSARI</td>
<td>0116 2583922</td>
<td>0116 2502627</td>
</tr>
<tr>
<td>DR ARNOLD</td>
<td></td>
<td>07904 551657</td>
</tr>
<tr>
<td>DR BANNING</td>
<td>0116 2583236</td>
<td>0116 2583476</td>
</tr>
<tr>
<td>DR BEHOUNEK</td>
<td>0116 2563029</td>
<td>0116 2503772</td>
</tr>
<tr>
<td>DR BOLGER (ACHD)</td>
<td>0116 2502530</td>
<td>0116 2563780</td>
</tr>
<tr>
<td>DR BU'LOCK (ACHD)</td>
<td>0116 2563799</td>
<td></td>
</tr>
<tr>
<td>DR CHELLIHA</td>
<td>0116 2563402</td>
<td>0116 2502378</td>
</tr>
<tr>
<td>DR CHAN</td>
<td>0116 2562333</td>
<td>0116 2503239</td>
</tr>
<tr>
<td>DR CHIN</td>
<td>0116 2502658</td>
<td>0116 2502972</td>
</tr>
<tr>
<td>DR DHUTIA</td>
<td>0116 2583888</td>
<td>0116 2573889</td>
</tr>
<tr>
<td>DR FARAH</td>
<td>0116 2502979</td>
<td></td>
</tr>
<tr>
<td>DR GARIMELLA</td>
<td>0116 2583361</td>
<td></td>
</tr>
<tr>
<td>DR HUDSON</td>
<td>0116 2583361</td>
<td>0116 2502920</td>
</tr>
<tr>
<td>DR HUSSAIN</td>
<td>0116 2502812</td>
<td>0116 2583476</td>
</tr>
<tr>
<td>DR IBRAHIM</td>
<td>0116 2502598</td>
<td>0116 2583655</td>
</tr>
<tr>
<td>DR KHOO</td>
<td>0116 2503888</td>
<td>0116 2582627</td>
</tr>
<tr>
<td>PROF KOVAC</td>
<td>0116 2502780</td>
<td>0116 2563914</td>
</tr>
<tr>
<td>DR LADWINIEC</td>
<td>0116 2502348</td>
<td>0116 2562920</td>
</tr>
<tr>
<td>DR LAZDAM</td>
<td>0116 2502598</td>
<td>0116 2563360</td>
</tr>
<tr>
<td>DR LOKE</td>
<td>0116 2563029</td>
<td>0116 2563036</td>
</tr>
<tr>
<td>PROF MCCANN</td>
<td>0116 2583997</td>
<td>0116 2044765</td>
</tr>
<tr>
<td>PROF NG</td>
<td>0116 2583297</td>
<td>3360 / 2438</td>
</tr>
<tr>
<td>DR NICOLSON</td>
<td>0116 2583977</td>
<td>0116 2503239</td>
</tr>
<tr>
<td>DR PATHMANATHAN</td>
<td>0116 2583977</td>
<td>0116 2502845</td>
</tr>
<tr>
<td>DR ROBERTS</td>
<td>0116 2502780</td>
<td>0116 2562540</td>
</tr>
<tr>
<td>DR SAIFULLAH (ACHD)</td>
<td>0116 2583961</td>
<td></td>
</tr>
<tr>
<td>PROF SAMANI</td>
<td>0116 2583236</td>
<td>0116 2563909</td>
</tr>
<tr>
<td>DR SANDILANDS</td>
<td>0116 2583297</td>
<td>0116 2583655</td>
</tr>
<tr>
<td>DR SHARAF</td>
<td>0116 2583036</td>
<td>0116 2582812</td>
</tr>
<tr>
<td>DR SINGH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR SOMANI</td>
<td>0116 2563887</td>
<td>0116 2563372</td>
</tr>
<tr>
<td>NAME</td>
<td>OFFICE</td>
<td>SECRETARY</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PROF SUZUKI</td>
<td>0116 2583402</td>
<td>0116 2044741</td>
</tr>
<tr>
<td>PROF SQUIRE</td>
<td>0116 2502348</td>
<td>0116 2044750</td>
</tr>
<tr>
<td>ON CALL CARDIOLOGY SPR</td>
<td>2584</td>
<td></td>
</tr>
<tr>
<td>ACHD SPR</td>
<td>2705</td>
<td></td>
</tr>
</tbody>
</table>

CARDIAC RADIOLOGISTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>OFFICE</th>
<th>SECRETARY</th>
<th>MOBILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR BAJAJ</td>
<td>0116 2502593</td>
<td>0116 2502561</td>
<td>07813 302723</td>
</tr>
<tr>
<td>DR DAS</td>
<td>0116 2583275</td>
<td>0116 2583357</td>
<td>07861 293158</td>
</tr>
<tr>
<td>DR DESHPANDE</td>
<td>0116 2583275</td>
<td>0116 2583357</td>
<td>07878 405799</td>
</tr>
<tr>
<td>DR MACHIN</td>
<td>0116 2583357</td>
<td></td>
<td>07841289963</td>
</tr>
<tr>
<td>DR PINGLAY</td>
<td></td>
<td></td>
<td>07970 284250</td>
</tr>
<tr>
<td>DR RAO</td>
<td>0116 2583357</td>
<td></td>
<td>07807 841700</td>
</tr>
</tbody>
</table>

CARDIAC SURGEONS

<table>
<thead>
<tr>
<th>NAME</th>
<th>OFFICE</th>
<th>SECRETARY</th>
<th>MOBILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR EFTHYMIOU</td>
<td>0116 2583316</td>
<td>0116 2583444</td>
<td>07595 922411</td>
</tr>
<tr>
<td>MR HADJINIKOLAOU</td>
<td>0116 2583316</td>
<td>0116 2583444</td>
<td>07913 490763</td>
</tr>
<tr>
<td>MR MARISCALCO</td>
<td>0116 2583078</td>
<td>0116 2583990</td>
<td>07754 309530</td>
</tr>
<tr>
<td>PROF MURPHY</td>
<td>0116 2583021</td>
<td>0116 2583021/3077</td>
<td>07508 205656</td>
</tr>
<tr>
<td>MR ZAKKAR</td>
<td>0116 2583019</td>
<td>0116 2583990</td>
<td>07765 251451</td>
</tr>
<tr>
<td>MR ZLOCHA</td>
<td>0116 2503059</td>
<td>0116 2583444</td>
<td>07530 076292</td>
</tr>
<tr>
<td>ON CALL SPR</td>
<td>07950 891093</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEPARTMENTAL NUMBERS

<table>
<thead>
<tr>
<th>Service</th>
<th>Glenfield</th>
<th>LRI</th>
<th>LGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHD Liaison Nurses</td>
<td>0116 2583338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrhythmia Nurses</td>
<td>0116 2583848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>0116 2583572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood Bank</td>
<td>0116 2583577</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bru Reception</td>
<td>0116 2583385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac Rehab</td>
<td>0116 2583986</td>
<td>7544</td>
<td>8069</td>
</tr>
<tr>
<td>Cardiology Audit Office</td>
<td>0116 2583099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiology Enquiries</td>
<td>0116 2502944</td>
<td>5128</td>
<td>4280</td>
</tr>
<tr>
<td>Cardiology SPRS</td>
<td>0116 2502934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiopversion Service</td>
<td>0116 2502494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiopversion Fax</td>
<td>0116 2563956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Lab A</td>
<td>0116 2583988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Lab B</td>
<td>0116 2583937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Lab C</td>
<td>0116 2583189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Lab D</td>
<td>0116 2583968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Lab E</td>
<td>0116 2583858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Lab F</td>
<td>0116 2583148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Lab Coordinator</td>
<td>0116 2583347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Lab Radiographers</td>
<td>0116 2502452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Suite Reception</td>
<td>0116 2583092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cath Suite Recovery</td>
<td>0116 2583929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCU</td>
<td>0116 2583774 / 3719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCU Fax</td>
<td>0116 2563228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDU</td>
<td>0116 2583718 / 3772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulation</td>
<td>0116 2583883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT Control Room</td>
<td>0116 2502358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT Reception</td>
<td>0116 2583265</td>
<td>5582</td>
<td></td>
</tr>
<tr>
<td>ECG & Tapes</td>
<td>0116 2583461 / 3840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echo Office</td>
<td>0116 2502537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise Test Room</td>
<td>0116 2583371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology</td>
<td>0116 2583575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot Reporting</td>
<td>0116 2583678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itu</td>
<td>0116 2583154 / 3159 / 3485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JDA Office</td>
<td>0116 2583972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td>0116 2586544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI Control Room</td>
<td>0116 2502359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI Reception</td>
<td>0116 2583265</td>
<td>7743</td>
<td></td>
</tr>
<tr>
<td>Occupational Health</td>
<td>0116 2502393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oda</td>
<td>0116 2583068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacemaker Clinic</td>
<td>0116 2583837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palliative Care</td>
<td>0116 2583540</td>
<td>5414</td>
<td>4680</td>
</tr>
<tr>
<td>Perfusionists</td>
<td>0116 2583604</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy</td>
<td>0116 2583701</td>
<td>5743</td>
<td></td>
</tr>
<tr>
<td>Racpc</td>
<td>0116 2583084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resus LRI Ed</td>
<td>5282 / 5590 / 6786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>GLENFIELD</td>
<td>LRI</td>
<td>LGH</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>RADIOISOTOPES</td>
<td>0116 2583850</td>
<td>5627</td>
<td>4624</td>
</tr>
<tr>
<td>THEATRE 1</td>
<td>0116 2583541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEATRE 2</td>
<td>0116 2583541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEATRE 3</td>
<td>0116 2583588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEATRE 4</td>
<td>0116 2583542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEATRE RECEPTION</td>
<td>0116 2583632</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEATRE RECOVERY</td>
<td>0116 2583622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USS</td>
<td>0116 2583678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 24</td>
<td>0116 2583656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 27</td>
<td>0116 2583671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 28</td>
<td>0116 2583646 / 3755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 29</td>
<td>0116 2583320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 31</td>
<td>0116 2583503 / 3781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 32</td>
<td>0116 2583731 / 3313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 33</td>
<td>0116 2583733 / 3849</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 33 HDU</td>
<td>0116 2502351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD 33A</td>
<td>0116 2502894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-RAY RECEPTION</td>
<td>0116 2583675</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOSPITAL NUMBERS

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSTON PILGRIM</td>
<td>01205 364801</td>
</tr>
<tr>
<td>BURTON (QUEENS HOSPITAL)</td>
<td>01283 566333</td>
</tr>
<tr>
<td>DERBY (ROYAL DERBY)</td>
<td>01332 340131</td>
</tr>
<tr>
<td>GRANTHAM</td>
<td>01476 565232</td>
</tr>
<tr>
<td>KETTERING</td>
<td>01536 492000</td>
</tr>
<tr>
<td>LINCOLN COUNTY</td>
<td>01522 512512</td>
</tr>
<tr>
<td>NORTHAMPTON GENERAL</td>
<td>01604 634700</td>
</tr>
<tr>
<td>NOTTINGHAM CITY</td>
<td>0115 9691169</td>
</tr>
<tr>
<td>NOTTINGHAM QMC</td>
<td>0115 9249924</td>
</tr>
<tr>
<td>NUFFIELD LEICESTER</td>
<td>0300 1311416</td>
</tr>
<tr>
<td>NUNEATON (GEORGE ELIOT)</td>
<td>02476 351351</td>
</tr>
<tr>
<td>PAPWORTH HOSPITAL</td>
<td>01223 638000</td>
</tr>
<tr>
<td>PETERBOROUGH</td>
<td>01733 678000</td>
</tr>
<tr>
<td>SHEFFIELD NORTHERN GENERAL</td>
<td>0114 2434343</td>
</tr>
<tr>
<td>SPIRE LEICESTER</td>
<td>0116 2720888</td>
</tr>
</tbody>
</table>
BLEEP NUMBERS

Use the following chart to determine which bleep prefix to use, REMEMBER to put 1 in front of 4 digit extension number:

<table>
<thead>
<tr>
<th>SITE YOU ARE AT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LRI</td>
<td>*88</td>
</tr>
<tr>
<td>LGH</td>
<td>*88</td>
</tr>
<tr>
<td>GH</td>
<td>*7</td>
</tr>
</tbody>
</table>
The medicines listed below are not a complete formulary but are drugs that are mostly on the Leicestershire Medicines Formulary: http://leicestershire.formulary.co.uk/

DIURETICS

In pulmonary oedema and more advanced heart failure, loop diuretics should be used. **Furosemide** and **bumetanide** are similar in activity, although **bumetanide** is better absorbed orally and may have advantages when administered to patients with congestive cardiac failure where bowel oedema may be an issue. **Torasemide** may be better tolerated due to its smoother mode of action but requires a consultant to prescribe. Thiazide diuretics are useful for mild heart failure and can be extremely good for severe congestive cardiac failure when used with a loop diuretic, although careful monitoring of weight and electrolytes is crucial. **Metolazone** is a powerful thiazide derivative, and needs particularly careful monitoring. In severe CCF, consider prolonged infusions of **furosemide** (e.g. 250 - 500 mg over 24 hours, rate must not exceed 4 mg/min). IV **furosemide** is not compatible with **dobutamine** or **dopamine**.

Spironolactone is a potassium sparing diuretic and aldosterone antagonist and has a particular use in heart failure when used in addition to an ACEI at a dose of 25 mg OD. Monitoring of potassium is important. Bigger doses may be needed in ascites.

Loop diuretics:

Furosemide (*Lasix*): 40 - 250 mg daily

Bumetanide (*Burinex*): 1 - 6 mg daily

Torasemide (*Torem*): 5 - 40 mg daily

Thiazide diuretics:

Bendroflumethiazide: 2.5 mg OD

Metolazone (*Metenix 5*): 2.5 - 5 mg daily or less

Potassium sparing diuretics:

Spironolactone (*Aldactone, Spiroctan*): 12.5 - 25 mg OD in heart failure

Eplerenone (*Inspra*): 25 - 50 mg in heart failure post-MI and in patients who develop gynaecomastia on Spironolactone.

Amiloride: 5 - 10 mg OD

ACE INHIBITORS

ACEI should be considered in all grades of heart failure and following large or anterior wall infarcts. They should also be considered in hypertensive patients, particularly those with vascular disease or diabetes. Patients should be treated with the highest dose that can be tolerated. Electrolytes should be checked after one week and within 3 months of starting to exclude deterioration in renal function. They should be avoided in renovascular disease and severe aortic stenosis.

Ramipril (*Tritace*): 1.25 - 10 mg OD and **Lisinopril** (*Carace, Zestril*): 2.5 - 20 mg OD are the preferred ACEI in Leicestershire.
ANGIOTENSIN-II RECEPTOR ANTAGONISTS

Generally currently used when ACEI are not tolerated because of dry cough, this class of drugs has an increasing role in the management of patients with heart failure. Good evidence exists for valsartan and candesartan in heart failure. Also used in hypertension, especially those with renal disease and type 2 diabetes.

Valsartan (Diovan): 40 - 160 mg BD (OD in hypertension), candesartan (Amias): 4 - 32 mg OD, losartan (Cozaar): 25 - 100 mg OD, irbesartan (Aprovel): 150 - 300 mg OD.

ANGIOTENSIN RECEPTOR-NEPRILYSIN INHIBITOR (ARNI)

Sacubitril valsartan is the only ARNI available. Licensed for use in symptomatic patients with NYHA II-IV with LVEF < 35% already taking ACEI or ARBs. Marketed as Entresto, the dosing is outlined in the main text. Main side effects are hypotension, hyperkalaemia and renal impairment.

BETA - BLOCKERS

β-blockers are effective as single agents in unstable angina and work by reducing myocardial oxygen demands by slowing the heart rate, lowering the blood pressure, and reducing contractility. There is evidence that progression to myocardial infarction is reduced by about one-sixth. In high-risk patients intravenous preparations should be used to achieve rapid effects (within 15 minutes); oral therapy may take 12 hours.

They should be avoided in marked first-degree AV block (> 0.24 s), second- or third-degree block, asthma, or severe left ventricular dysfunction (unless very carefully introduced). Atenolol, bisoprolol, metoprolol, and nebivolol have less effect on the β2 (bronchial) receptors and are, therefore, relatively cardioselective.

Atenolol: 2.5 - 10 mg IV (Tenormin). Comes as 0.5 mg/ml (5 mg in 10 ml). Administered undiluted in increments of 2.5 mg, repeated at 5 minute intervals and given by slow bolus (1 mg/min). Start 50 mg OD orally. For oral β-blockade, alternative drugs include the following:

Bisoprolol (Emcor, Monocor): 2.5 - 20 mg daily. This medication is also licensed for use in patients with heart failure.

Metoprolol (Betaloc, Lopressor): 25 - 100 mg, two to three times daily. Sustained release (once daily) preparations Betaloc-SA and Lopressor SR are available as 200 mg doses, maximum 400 mg daily.

Available in IV form with ampoules containing 5 mg/5ml. Dose is 1 - 2 mg/min given at 5 minute intervals. Use should be restricted for management of tachycardia post MI.

Carvedilol (Eucardic): 3.125 - 25 mg twice daily orally. This medication is also licensed for use in patients with heart failure.

Propranolol (Inderal): 40 mg two to three times daily orally, maximum 240 mg daily.

Esmolol (Brevibloc): a relatively cardioselective β-blocker for IV use. Steady state is achieved in 5 minutes with loading dose; lasts about 10 - 20 minutes after infusion stopped. Renal elimination. Useful for rapid control of tachycardia. May be used for hypertension. Short-term use only. Diluted in glucose 5% or sodium chloride 0.9%. Supplied ready to use as 10 mg vial of 10 mg/ml and also a premixed bag containing...
2500 mg in 250 ml. A 10 ml ampoule containing 250 mg/ml is also available which MUST BE DILUTED.

Loading dose is 500 µg/kg/min for 1 minute.

Maintenance is 50 - 200 µg/kg/min continuous.

Esmolol Dosage Flowchart

Dosage of *esmolol* in supraventricular tachycardia must be individualised by titration in which each step consists of a loading dose followed by a maintenance infusion.

1. Administer loading dose (500 µg/kg) over 1 minute then

2. Initiate maintenance infusion of 50 µg/kg/min over 4 minutes

3. If an adequate therapeutic response is observed over the first 5 minutes then maintain the same maintenance infusion rate

4. If an adequate therapeutic response is NOT observed, then repeat the same loading dose over 1 minute followed by an increased maintenance infusion rate of 100 µg/kg/min

5. Continue titration procedure as above, repeating the original loading dose of 0·5 mg/kg over 1 minute, but increasing the maintenance infusion rate by 50 µg/kg/minute increments

6. The maximum infusion rate is 200 µg/kg/min

As the desired heart rate or blood pressure is approached, omit subsequent loading doses and titrate the maintenance up or down. The interval between titration steps may be increased from 5 to 10 minutes.

The use of *esmolol* infusions for up to 24 hours is usual and the dosage of *esmolol* should be reduced gradually before stopping - for more information see the *esmolol* data sheet.
Maintenance infusion rate in ml/hr when using a 10 mg/ml solution for infusion of Esmolol

<table>
<thead>
<tr>
<th>Patient weight (kg)</th>
<th>Loading dose (ml)</th>
<th>Maintenance infusion rate (ml/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50 micrograms</td>
</tr>
<tr>
<td>40</td>
<td>2.0</td>
<td>12.0</td>
</tr>
<tr>
<td>45</td>
<td>2.25</td>
<td>13.5</td>
</tr>
<tr>
<td>50</td>
<td>2.5</td>
<td>15.0</td>
</tr>
<tr>
<td>55</td>
<td>2.75</td>
<td>16.5</td>
</tr>
<tr>
<td>60</td>
<td>3.0</td>
<td>18.0</td>
</tr>
<tr>
<td>65</td>
<td>3.25</td>
<td>19.5</td>
</tr>
<tr>
<td>70</td>
<td>3.5</td>
<td>21.0</td>
</tr>
<tr>
<td>75</td>
<td>3.75</td>
<td>22.5</td>
</tr>
<tr>
<td>80</td>
<td>4.0</td>
<td>24.0</td>
</tr>
<tr>
<td>85</td>
<td>4.25</td>
<td>25.5</td>
</tr>
<tr>
<td>90</td>
<td>4.5</td>
<td>27.0</td>
</tr>
<tr>
<td>95</td>
<td>4.75</td>
<td>28.5</td>
</tr>
<tr>
<td>100</td>
<td>5.0</td>
<td>30.0</td>
</tr>
<tr>
<td>105</td>
<td>5.25</td>
<td>31.5</td>
</tr>
<tr>
<td>110</td>
<td>5.5</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Labetalol hydrochloride (Trandate)

In **glucose** 5% or **sodium chloride** 0.9%. Supplied as 100 mg in a 20 ml ampoule (5 mg/ml). Central administration is preferable as the preparation has a low pH. For infusions, dilute to 1 mg/ml: remove 90 ml from a 250 mg bag and add 40 ml (200 mg) **labetalol**.

Following myocardial infarction, the infusion should be commenced at 15 mg/hr and gradually increased to a maximum of 120 mg/hr depending on the control of blood pressure. In other cases where rapid control of blood pressure is indicated, the rate of infusion should be about 2 mg/min, until a satisfactory response is obtained.

If it is essential to reduce blood pressure quickly, as for example, in hypertensive encephalopathy, a dose of 50 mg should be given by intravenous injection over a period of at least one minute. If necessary, doses of 50 mg may be repeated, up to three times, at five minute intervals until a satisfactory response occurs. The total dose should not exceed 200 mg.

DIGOXIN

Digoxin is used for the control of ventricular rate in atrial flutter and fibrillation. It should not necessarily be the first choice in these arrhythmias, but is particularly
useful if β-blockers or non-dihydropyridine calcium antagonists are inadequate or contraindicated. Digoxin is also a weak inotrope and should be considered for atrial flutter/fibrillation in the context of heart failure. It may also be beneficial in the presence of sinus rhythm and heart failure.

For rapid oral loading give 0.75 - 1.5 mg over 24 hours in divided doses. Maintenance dose is usually 62.5 - 250 µg daily.

For emergency IV loading, administer 0.75 - 1 mg by IV infusion over at least 2 hours. Dilute in 50 - 100 ml of either sodium chloride 0.9% or glucose 5%.

Reference levels are usually between 0.5 and 2.0 g/L.

CALCIUM CHANNEL BLOCKERS

These drugs act as coronary vasodilators, and exert negatively inotropic effects. They also lower blood pressure and may improve left ventricular compliance. They should usually be avoided in heart failure.

The dihydropyridine calcium antagonists do not exert an effect on the AV node and therefore should be reserved for patients who already have a resting heart rate between 50 and 60 achieved physiologically or with β-blockade. They should generally not be used in patients as monotherapy unless thought to have coronary artery spasm in association with ST-segment elevation. Drugs which do act on the AV node (non-dihydropyridines) should be used with caution in the presence of β-blockers, and in this setting verapamil should not be used unless recommended by a consultant. They can be used as monotherapy if β-blockers are contraindicated.

There is little evidence showing any significant benefit in terms of morbidity and mortality when using calcium antagonists, with the possible exception of diltiazem.

Dihydropyridines:

Amlodipine (**Istin**): 5 - 10 mg OD is the only formulary drug. Nicardipine and lercanidipine are non-formulary.

Non-dihydropyridines:

Verapamil (**Securon**): Usual dose is 80 - 120 mg TDS. Sustained-release preparations are available (**Securon SR**) 240 - 480 mg daily in 2 divided doses, occasionally once daily.

Diltiazem: starting dose 60 mg BD/TDS, titrating up to 360 mg/day. Longer-acting formulations should be used carefully as the doses and timing vary between preparations. In Leicestershire Angitil is the preferred BD brand (90 - 180 mg BD). Once daily the preferred brand is Viazem (120 mg OD, 180 mg OD, 240 mg OD, 300 mg OD and 360 mg OD).

NITRATES

There is no evidence that nitrates reduce the incidence of myocardial infarction or death, but they are very useful for the relief of angina. They should rarely, if ever, be used in isolation for unstable angina. Their major mechanism of action is probably via venodilation, which reduces preload. The major problem is that tolerance can develop within 24 hours.

Nitroglycerin should be given immediately, as either a sublingual tablet or spray, to relieve angina. If symptoms persist, intravenous GTN starting at 1.0 mg/hr. The dose
should be steadily increased in increments 0.5 - 1 mg/hr until the desired clinical response is achieved. Usual dosage range is 0.5 mg - 12 mg/hr.

Titration should avoid excessive falls in systolic blood pressure (stop if < 90 mmHg). It is probably not necessary to wean patients off. Oral therapy should be substituted after 24 hours. Remember nitrate tolerance occurs even when IV therapy is employed.

Dilution is NOT NECESSARY unless concentrated solution is greater than 1 mg/ml. If required, dilute in glucose 5% or sodium chloride 0.9% in a syringe not a bag. Polyethylene tubing should be used, as polyvinyl chloride may absorb up to 50% of the GTN. Adverse effects include headache, dizziness, flushing, hypotension and tachycardia. Reducing rate of infusion can often alleviate these effects.

Glyceryl Trinitrate: 300 - 500 µg SL (1 - 2 tablets), 400 µg SL (1 - 2 sprays).

Isosorbide Mononitrate: usual dose is 10 - 60 mg BD (with doses being 6 - 8 hours apart and not 12 hourly). Modified release tablets can be given once daily (Elantan LA 25 - 100 mg as capsules, Imdur 30 - 120 mg as tablets).

Sodium Nitroprusside

Reconstituted in 5% glucose. Supplied as 5 ml vials each containing 50 mg nitroprusside (10 mg/ml). Dissolve 50 mg in 250 ml (200 µg/ml) or in 500 ml (100 µg/ml) or in 1000 ml (50 µg/ml). **Need to add 5 ml of 10% sodium thiosulphate per 50 mg dose of nitroprusside to every infusion.**

Dose depends on indication.

For hypertensive crisis, initially 0.5 - 1.5 µg/kg/min is used, titrating up by 0.5 µg/kg/min in 5 minute intervals to a maximum of 10 µg/kg/min.

In heart failure, 10 - 15 µg/min is employed initially, increased 10 - 15 µg/min every 5 - 10 minutes to a maximum of 200 µg/min.

ATP-DEPENDENT POTASSIUM CHANNEL ACTIVATORS

Nicorandil is a potassium-channel activator with a nitrate component, and has both arterial and venous vasodilating properties and is indicated for the prevention and long-term treatment of angina. It may have a role to play in the management of unstable angina when added to maximal therapy.

Nicorandil (Ikorel): 5 - 30 mg BD.

STATINS

There is considerable evidence to support the use of statins in patients with documented coronary artery disease. The aim is to lower total cholesterol below 4.0 mmol/l and LDL-cholesterol below 2.0 mmol/l. Only Pravastatin, Simvastatin, Atorvastatin and Rosuvastatin can be recommended for use in Leicestershire for cardiac patients. Fluvastatin can be used in renal transplant patients.

Atorvastatin (Lipitor): 10 - 80 mg OD

Pravastatin (Lipostat): 10 - 40 mg ON

Simvastatin (Zocor): 40 - 80 mg ON (lower doses if eGFR < 30)

Fluvastatin (Lescol): 20 - 80 mg ON (lower doses if eGFR < 30)
Rosuvastatin (*Crestor*): 5 - 40 mg OD (start at 5 mg OD in Asians and those with eGFR 30 - 60, avoid if eGFR < 30, maximum dose 20 mg OD).

ANTIARRHYTHMIC DRUGS

Antiarrhythmic drugs should be avoided with antidepressants and antihistamines.

Adenosine (*Adenocor*) is useful for the termination of supraventricular tachycardias, and as an aid in the diagnosis of broad complex tachycardias - terminating the majority of tachycardias of supraventricular origin, but not of ventricular origin. It commonly causes transient chest discomfort and flushing and the patient should be accordingly advised. It should be given by *rapid* intravenous injection starting at 3 to 6 mg and at 2 minute intervals the dose should be increased to 12 mg and occasionally 18 mg if unsuccessful at lower doses.

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Rate (ml/hr)</th>
<th>Weight (kg)</th>
<th>Rate (ml/hr)</th>
<th>Weight (kg)</th>
<th>Rate (ml/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>378</td>
<td>75</td>
<td>630</td>
<td>105</td>
<td>882</td>
</tr>
<tr>
<td>50</td>
<td>420</td>
<td>80</td>
<td>672</td>
<td>110</td>
<td>924</td>
</tr>
<tr>
<td>55</td>
<td>462</td>
<td>85</td>
<td>714</td>
<td>115</td>
<td>966</td>
</tr>
<tr>
<td>60</td>
<td>504</td>
<td>90</td>
<td>756</td>
<td>120</td>
<td>1008</td>
</tr>
<tr>
<td>65</td>
<td>546</td>
<td>95</td>
<td>798</td>
<td>125</td>
<td>1050</td>
</tr>
<tr>
<td>70</td>
<td>588</td>
<td>100</td>
<td>840</td>
<td>130</td>
<td>1092</td>
</tr>
</tbody>
</table>

In the catheter lab *Adenosine* is used for no-reflow and also in the context of pressure wire studies if the FFR is above 0.8.

For no-reflow, draw up *Adenosine* 5 mg (1.7 ml) from a 3 mg/ml ampoule) and dilute in 500 ml 0.9% *sodium chloride*. This gives a concentration of 10 µg/ml. For the *left coronary artery*, boluses of 40 - 80 µg (4 - 8 ml) are given and for the *right coronary artery*, 20 - 40 µg (2 - 4 ml). For pressure wire studies, IV administration via the femoral vein is preferred at a rate of 140 µg/kg/min. 0.9% *sodium chloride* bags are stocked at 130 mg in 130 ml. A slightly bigger dose may be needed via a peripheral vein.

Amiodarone (*Cordarone X*) is useful for both supraventricular and ventricular arrhythmias. It may be administered intravenously or orally.

Amiodarone administered orally requires a loading regime which is usually 200 mg TDS for a week, 200 mg BD for a week and 200 mg OD maintenance. *Amiodarone* potentiates both *digoxin* and *warfarin* and so doses of these drugs may need reducing subsequent to *amiodarone* initiation. Photosensitivity affects about 50%, hypothyroidism occurs in about 6% and hyperthyroidism in 1 - 2%. Patients should also be counselled regarding risk of liver impairment and pulmonary fibrosis. Grey pigmentation is more likely if barrier creams are not used.

IV *amiodarone* is supplied in ampoules of 3 ml (150 mg). Dilute in *glucose* 5%. Do not give via same line as *heparin, dobutamine, insulin, GTN* or *sodium*.
bicarbonate. Maintenance infusions should generally be given centrally. If given peripherally must be via a grey catheter in a large vein and NEVER in the hand.

Loading: 300 mg over the FIRST 60 minutes (dilute in 100 - 250 ml glucose 5%). In extreme clinical emergency, amiodarone may be given as a slow injection of 150 - 300 mg in 10 - 20 ml 5% glucose over a minimum of 3 minutes. This should not be repeated for at least 15 minutes.

Followed by Slow infusion: 900 mg over the NEXT 23 hours, diluted in 250 - 500 ml glucose 5%.

Oral loading is 200 mg TDS for a week, 200 mg BD for a week and 200 mg OD maintenance. Patients should be advised of the long-term risk of side-effects such as thyroid and liver dysfunction and phototoxicity.

Sotalol (Beta-Cardone, Sotacor) is a β-blocker which is very useful for supraventricular arrhythmias and occasionally ventricular arrhythmias. It is usually given at a dosage of 40 - 160 mg BD. For class III effect, at least 80 mg BD is needed.

Flecainide (Tambocor) is very useful for supraventricular arrhythmias, particularly paroxysmal atrial fibrillation and re-entry tachycardias. It should be avoided in patients with documented coronary disease (unless being administered intravenously under cardiac monitoring) or in those with LV dysfunction. Oral dose is 50 - 150 mg BD.

Flecainide can be very effective IV, especially with atrial fibrillation of recent onset. Diluted in glucose 5% or sodium chloride 0·9%. Supplied as 150 mg in a 15 ml ampoule (10 mg/ml).

Flecainide injection can be given in an emergency or for rapid effect by a slow injection of 2 mg/kg over not less than 10 minutes, or in divided doses. If preferred, the dose may be diluted with 5% glucose and given as a mini-infusion.

When prolonged IV administration is required, it is recommended that therapy is initiated by slow injection of 2 mg/kg over 30 minutes and continued by intravenous infusion at the following rates:

First hour: 1·5 mg/kg/hr.

Second and later hours: 0·1 - 0·25 mg/kg/hr.

It is recommended that the infusion duration should not exceed 24 hours. The maximum cumulative dose given in the first 24 hours should not exceed 600 mg. In patients with severe renal impairment, each of the above dosage recommendations should be reduced by half.

Propafenone (Arythmol) is useful for supraventricular arrhythmias, especially paroxysmal atrial fibrillation. It should be avoided in patients with coronary disease or LV dysfunction. Dose is usually 150 mg TDS or if necessary 300 mg BD or TDS.

Lidocaine is useful for stabilising ventricular arrhythmias. Usual loading dose is 50 to 100 mg administered intravenously. This dose may be injected at a rate of approximately 25 to 50 mg per minute (2·5 to 5·0 ml using a 1% solution or 1·25 to 2·5 ml using a 2% solution). A sufficient period of time should be allowed to enable a slow circulation to carry the drug to the site of action. If the initial dose of 50 to 100 mg does not produce the desired response, a second dose may be given after 5
minutes. No more than 200 to 300 mg of *lidocaine* should be administered during a one hour period.

If an infusion is indicated, give 4 mg/min for 30 minutes, 2 mg/min for 2 hours, then 1 mg/min for a maximum of 24 hours.

SEDATION FOR CARDIOVERSION

This should only be undertaken by personnel experienced in cardioversion under sedation. If inexperienced, an anaesthetist should be called for assistance.

Midazolam (Hypnovel) has a half-life of ~ 2·5 hours. Ampoules come as 10 mg in 5 ml. The contents of one should be diluted to give a concentration of 10 mg in 10 ml (= 1 mg in 1 ml)

First dose: 2·5 mg = 2·5 ml of 1 mg/1 ml dilution to be given over 30 seconds (patients under 50 kg, first dose 1·5 mg = 1·5 ml of 1 mg/1 ml dilution to be given over 30 seconds). Patients with a serum creatinine > 200 µmol/l should have the first dose of *midazolam* reduced).

Subsequent doses: 1 mg = 1 ml of 1 mg/1 ml dilution to be given over 30 seconds at 2 minute intervals if required as per main protocol. The maximum total dose of *midazolam* should not exceed 12 mg. After each dose of *midazolam*, the cannula should be flushed with 0·9% *sodium chloride*.

Flumazenil (Anexate) has a half-life of ~ 40 - 80 minutes. Ampoules come as 500 µg/5 ml (100 µg/ml). It is used to reverse the sedation of *midazolam*. It should only be given when absolutely necessary and not as a matter of routine.

First dose: 200 µg = 2 ml from ampoule to be given over 15 seconds.

Subsequent doses: 100 µg = 1 ml from above ampoule at 60 second intervals if required.

Maximum total dose of *flumazenil* not to exceed 1 mg (= 1000 µg)

(NB *Flumazenil* has a shorter half-life than *midazolam* and there is a risk that patients may become re-sedated).

UNFRACTIONATED HEPARIN (UFH)

When using *UFH*, coagulation parameters need to be monitored and maintained at 2·5 - 4·0 x control.

Loading dose: 5000 U (using 1000 U/ml *heparin*) over 5 minutes by slow IV injection.

Initial infusion rate: 1400 U/hr.

Check APTT at 4 - 6 hours - adjust rate as follows:

<table>
<thead>
<tr>
<th>APTT ratio</th>
<th>Dose/Rate change</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 6</td>
<td>stop for 30 min to 1 hour and reduce by 500 U/hr</td>
</tr>
<tr>
<td>5·1 - 6·0</td>
<td>reduce by 300 U/hr</td>
</tr>
<tr>
<td>4·1 - 5·0</td>
<td>reduce by 100 U/hr</td>
</tr>
<tr>
<td>2·5 - 4·0</td>
<td>no change</td>
</tr>
<tr>
<td>1·8 - 2·4</td>
<td>increase by 100 U/hr</td>
</tr>
<tr>
<td>1·2 - 1·7</td>
<td>increase by 200 U/hr</td>
</tr>
<tr>
<td>< 1·2</td>
<td>increase by 400 U/hr</td>
</tr>
</tbody>
</table>
Heparin reversal occurs relatively quickly as the half-life is 90 minutes. If more rapid reversal is required, protamine sulphate can be employed (1 mg for each 100 U of heparin given in the previous 4 hours). Administration is by slow bolus over several minutes. If > 30 minutes has passed since the infusion was discontinued, reduce the dose of protamine sulphate by 50%.

LOW-MOLECULAR WEIGHT HEPARIN (LMWH)

A number of studies have now shown that LMWH is as good, if not better than UFH. Their ease of use, and predictable anticoagulant effect, make them preferable to UFH.

Dosing depends on the indication. Dose reduction may be required in severe renal impairment (CrCl < 30 ml/min).

WARFARIN

Patients with liver disease, heart failure, or other possible causes of increased sensitivity to warfarin should have their INR checked prior to commencing warfarin.

Ensure you are familiar with how to refer to the anticoagulant outpatient service.

Tait and Sefcick Slow Initiation Warfarin Regime:
Pre Treatment INR < 1.3 and not on amiodarone

Warfarin 5 mg days 1 - 4
Check INR day 5, 8 & 12

<table>
<thead>
<tr>
<th>INR Day 5</th>
<th>Warfarin Dose From Day 5</th>
<th>INR Day 8</th>
<th>Warfarin Dose From Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.7</td>
<td>5 mg</td>
<td>< 1.7</td>
<td>6 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 - 2.4</td>
<td>5 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 - 3.0</td>
<td>4 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 3.0</td>
<td>3 mg for 4 days</td>
</tr>
<tr>
<td>1.8 - 2.2</td>
<td>4 mg</td>
<td>< 1.7</td>
<td>5 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 - 2.4</td>
<td>4 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 - 3.0</td>
<td>3.5 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1 - 3.5</td>
<td>3 mg for 4 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 3.5</td>
<td>2.5 mg for 4 days</td>
</tr>
<tr>
<td>2.3 - 2.7</td>
<td>3 mg</td>
<td>< 1.7</td>
<td>4 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 - 2.4</td>
<td>2.5 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 - 3.0</td>
<td>2 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1 - 3.5</td>
<td>1.5 mg for 4 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 3.5</td>
<td>1 mg for 4 days</td>
</tr>
<tr>
<td>2.8 - 3.2</td>
<td>2 mg</td>
<td>< 1.7</td>
<td>3 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 - 2.4</td>
<td>2.5 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 - 3.0</td>
<td>2 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1 - 3.5</td>
<td>1.5 mg for 4 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 3.5</td>
<td>1 mg for 4 days</td>
</tr>
<tr>
<td>3.3 – 3.7</td>
<td>1 mg</td>
<td>< 1.7</td>
<td>2 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 - 2.4</td>
<td>1.5 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 - 3.0</td>
<td>1 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1 - 3.5</td>
<td>0.5 mg for 4 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 3.5</td>
<td>omit for 4 days</td>
</tr>
<tr>
<td>> 3.7</td>
<td>0 mg</td>
<td>< 2.0</td>
<td>1.5 mg for 4 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 - 2.9</td>
<td>1 mg for 4 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0 - 3.5</td>
<td>0.5 mg for 4 days</td>
</tr>
</tbody>
</table>
Fennetry Algorithm

<table>
<thead>
<tr>
<th>Day</th>
<th>INR</th>
<th>Warfarin Dose (mg)</th>
<th>Day</th>
<th>INR</th>
<th>Warfarin Dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 1.4</td>
<td>10</td>
<td></td>
<td>< 1.4</td>
<td>> 8</td>
</tr>
<tr>
<td>2</td>
<td>< 1.8</td>
<td>10</td>
<td>1.4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>1</td>
<td>1.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 1.8</td>
<td>0.5</td>
<td>1.6 - 1.7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>< 2.0</td>
<td>10</td>
<td>1.8</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 - 2.1</td>
<td>5</td>
<td>1.9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 - 2.3</td>
<td>4.5</td>
<td>2.0 - 2.1</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 - 2.5</td>
<td>4</td>
<td>2.2 - 2.3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6 - 2.7</td>
<td>3.5</td>
<td>2.4 - 2.6</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8 - 2.9</td>
<td>3</td>
<td>2.7 - 3.0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0 - 3.1</td>
<td>2.5</td>
<td>3.1 - 3.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2 - 3.3</td>
<td>2</td>
<td>3.6 - 4.0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>1.5</td>
<td>4.1 - 4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>1</td>
<td>Miss next dose then give 2 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6 - 4.0</td>
<td>0.5</td>
<td>> 4.5</td>
<td>Miss next 2 doses then give 1 mg</td>
<td></td>
</tr>
<tr>
<td>> 4.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the emergency reversal of warfarin, concentrates of factors II, VII, IX and X (e.g. Octaplex) are available and will normalise the INR in 10 minutes. The dose is 25 - 40 U/kg. FFP has virtually no role, providing around 25% reversal. Also give 1 mg of IV Vitamin K. Vitamin K alone will reverse anticoagulation in about 6 hours.

DOACs

Rivaroxaban is prescribed at a dose of 20 mg OD. Creatinine clearance (CrCl) should be calculated (not eGFR) using the Cockcroft-Gault equation (need age, weight in kg, serum creatinine and sex). There are numerous web based calculators. http://www.mdcalc.com/creatinine-clearance-cockcroft-gault-equation/

Reduce the dose to 15 mg OD if CrCl is 30 - 49 mL/minute; refer to haematologist if CrCl is 15 - 29; avoid if CrCl less than 15 mL/minute. In patients with hepatic disease associated with coagulopathy and clinically significant bleeding risk, including cirrhotic patients, rivaroxaban should not be prescribed. NICE recommends
rivaroxaban in patients with previous stroke or TIA, heart failure, hypertension, diabetes and those aged over 75.

Apixaban is recommended by NICE in patients with non-valvular AF with one or more risk factors of prior stroke or TIA, age 75 or over, hypertension, diabetes or heart failure. Prescription is done under a shared care agreement. The dose is 5mg BD (2.5 mg BD if over 80, weighs less than 60 kg, or if CrCl 15 - 29 mL/minute, or if serum-creatinine ≥ 133; avoid if CrCl less than 15 mL/minute). **Apixaban** should be considered in preference to rivaroxaban in patients with a history of previous GI blood loss or current dyspepsia.

Dabigatran is prescribed at 150 mg BD unless there is a higher risk of bleeding when the lower dose of 110 mg BD should be used. It is not used in AF in Leicester. It must be stopped if the eGFR is less than 30. It should be used with caution with other p glycoprotein substrates e.g. verapamil, amiodarone, clarithromycin) with at least a 2 hour gap between taking dabigatran and these drugs. NICE recommends its use in patients with previous stroke, TIA or embolism, LVEF less than 40%, NYHA heart failure class 2 or above, aged 75 or older, and aged 65 or older if there are other risks such as diabetes, coronary disease or hypertension.

ANTIPLATELET THERAPY

Aspirin has been shown to reduce the incidence of death and myocardial infarction in patients with unstable angina. In the absence of contraindications, all patients should receive 75 mg/day, after an initial dose of 300 mg. In the RISC study, even low dose aspirin (75 mg/day) reduced the risk of death or MI after an episode of ACS by 50% at three months.

For those with apparent aspirin allergy, many patients can be successfully desensitised over half a day employing the following algorithm:

Doses are administered every 30 minutes employing aspirin dissolved in water.

Aspirin 75 mg in 75 mL of water gives 1 mg/mL

Aspirin 300 mg in 30 mL of water gives 10 mg/mL

Aspirin 150 mg in 6 mL of water gives 25 mg/mL

<table>
<thead>
<tr>
<th>TIME</th>
<th>DOSE (mg)</th>
<th>CONCENTRATION</th>
<th>VOLUME (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1 mg/mL</td>
<td>5</td>
</tr>
<tr>
<td>+ 30 mins</td>
<td>10</td>
<td>10 mg/mL</td>
<td>1</td>
</tr>
<tr>
<td>+ 60 mins</td>
<td>20</td>
<td>10 mg/mL</td>
<td>2</td>
</tr>
<tr>
<td>+ 90 mins</td>
<td>40</td>
<td>10 mg/mL</td>
<td>4</td>
</tr>
<tr>
<td>+ 120 mins</td>
<td>75</td>
<td>25 mg/mL</td>
<td>3</td>
</tr>
</tbody>
</table>

Clopidogrel (Plavix®): In patients unable to tolerate aspirin, clopidogrel (an antagonist of ADP-induced platelet aggregation) should be used. **Clopidogrel** (75 mg/day) does appear to be at least as effective as aspirin.
Ticagrelor. Ticagrelor is a relatively new non-thienopyridine ADP receptor blocker causing reversible inhibition of platelet function. **Ticagrelor** is given as a loading dose of 180 mg daily followed by 90 mg BD. For patients who cannot have **prasugrel** (weight < 60 kg, age > 75) in STEMI, **ticagrelor** should be considered. **Ticagrelor** is the first choice drug in patients with confirmed acute coronary syndrome (NSTEMI) whether or not they undergo PCI. It should be given for 12 months in the context of ACS along with **aspirin** 75 mg OD. A side effect to be aware of is dyspnoea which can occur at rest.

Prasugrel. Prasugrel is a thienopyridine and works in a similar way to **clopidogrel**, by inhibiting platelets’ ADP receptors to achieve its antiplatelet effects. The onset of action is significantly quicker with **prasugrel** compared to **clopidogrel**. Prasugrel is administered as a loading dose of 60 mg followed by 10 mg daily (for up to 12 months). Guidance from the National Institute of Clinical Excellence (NICE) states that **prasugrel** should be used alongside **aspirin** in place of **clopidogrel** in patients presenting with STEMI who require treatment with PPCI, and in those who have suffered stent thrombosis whilst on **clopidogrel** therapy.

Particular benefit is apparent in patients with diabetes and those under the age of 75. **It is contraindicated in patients who have had prior stroke or TIA and should be avoided in patients who weigh less than 60kg.**

GLYCOPROTEIN IIB/IIIa INHIBITORS:

Tiroliban (Aggrastat®)

In **glucose** 5% or **sodium chloride** 0-9%. Given intravenously at an initial infusion rate of 0-4 µg/kg/min for 30 minutes. At the end of the initial infusion, **Aggrastat** should be continued at a maintenance infusion rate of 0-1 µg/kg/min. infusion should be between 48 and 108 hours. **Aggrastat** should be given with **UFH** (usually an intravenous bolus of 5000 U simultaneously with the start of **Aggrastat** therapy, then approximately 1000 U/hr, titrated on the basis of the APTT, which should be about twice the normal value). Check APTT after 6 hours. In renal failure (creatinine clearance < 30 ml/min), the dosage of **Aggrastat** should be reduced by 50%. Half-life is 1-5 hours. Should not be administered in same line as diazepam. Compatible with **heparin, dopamine, lidocaine** and **potassium** infusions.

Contraindications are not dissimilar to thrombolysis:

- Pregnancy and lactation
- Hypersensitivity
- Thrombocytopenia with previous GP IIb/IIIa inhibitor
- Stroke in previous 30 days
- Any history of haemorrhagic stroke
- History of intracranial disease
- Clinically relevant bleeding within past 30 days
- Malignant hypertension
- Trauma or major surgery within past 6 weeks
- Thrombocytopenia (platelet count < 100000/mm3)
Disorders of platelet function
- Clotting disturbances
- Severe liver failure

In patients undergoing PCI, continue *tirofiban* if already running, through the intervention. As far as the *UFH* is concerned, it should be stopped (this can be up to 6 hours before procedure). A bolus dose of *UFH* of about 70 IU/kg will be given in the catheter lab. Continue *tirofiban* infusion for 18 - 20 hours post PCI.

<table>
<thead>
<tr>
<th>Patient weight (kg)</th>
<th>Most Patients</th>
<th>Renal Failure (Creatinine > 150)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 min Loading Infusion Rate (ml/hr)</td>
<td>Maintenance Infusion Rate (ml/hr)</td>
</tr>
<tr>
<td>30 - 37</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>38 - 45</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>46 - 54</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>55 - 62</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>63 - 70</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>71 - 79</td>
<td>36</td>
<td>9</td>
</tr>
<tr>
<td>80 - 87</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>88 - 95</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>96 - 104</td>
<td>48</td>
<td>12</td>
</tr>
<tr>
<td>105 - 112</td>
<td>52</td>
<td>13</td>
</tr>
<tr>
<td>113 - 120</td>
<td>56</td>
<td>14</td>
</tr>
<tr>
<td>121 - 128</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>129 - 137</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>138 - 145</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>146 - 153</td>
<td>72</td>
<td>18</td>
</tr>
</tbody>
</table>

Femoral sheaths can be removed when activated clotting time (ACT) is less than 180 seconds (or aPPT ratio < 1.5) – usually 2 - 6 hours after discontinuation of UFH.

Abciximab (ReoPro®)

In *glucose* 5% or *sodium chloride* 0.9%. The recommended dose of *ReoPro* is a 0.25 mg/kg intravenous bolus immediately followed by a 0.125 µg/kg/min (to a maximum of 10 µg/min) continuous intravenous infusion. The infusion should continue for 12 hours following PTCA.

If a patient's activated clotting time (ACT) is less than 200 seconds prior to the start of the PTCA procedure, an initial bolus of *UFH* should be given upon gaining arterial
access according to the following algorithm: ACT < 150 seconds: administer 70 IU/kg; ACT 150 - 199 seconds: administer 50 IU/kg. The initial UFH bolus dose should not exceed 7000 IU.

Check ACT prior to arterial sheath removal: do not remove sheath unless ACT ≤ 180 seconds. Initial half-life is less than 10 minutes.
INOTROPES

Dobutamine (Dobutrex®)

Dobutamine is a sympathomimetic agent with direct effects on β₁-adrenergic receptors, which confer upon it a prominent inotropic action on the heart. Supplied as 250 mg in 20 ml vials.

6x body weight of *dobutamine* (in mg) is diluted to a total volume of 100 ml with 5% glucose, this allows 1 ml/hr = 1 µg/kg/min.

Dopamine (Intropin®)

3x body weight of *dopamine* (in mg) is diluted to a total volume of 50 ml with 5% glucose, this allows 1 ml/hr = 1 µg/kg/min. Change solution every 24 hours.

Compatible with *dobutamine* via Y site. Incompatible with alkaline solutions e.g. bicarbonate solutions. Best infused into a large vein or centrally as extravasation can cause tissue necrosis. If this occurs, infiltration of the affected area with 10 - 15 ml of 0·9% sodium chloride containing 5 - 10 mg phentolamine mesylate may help. A syringe with a fine hypodermic needle should be used to liberally infiltrate the ischaemic area as soon as extravasation is noted.

Adverse effects: The most frequently reported include ectopic beats, tachycardia, anginal pain, palpitations, dyspnoea, nausea, vomiting, hypotension and peripheral vasoconstriction.

In IV doses of 0·5 - 2 µg/kg/min, the drug acts predominantly on dopaminergic receptors; in IV doses of 2 - 10 µg/kg/min, the drug also stimulates β₁-adrenergic receptors. In higher therapeutic doses, α-adrenergic receptors are stimulated and the net effect of the drug is the result of α-adrenergic, β₁-adrenergic, and dopaminergic stimulation. The main effects of *dopamine* depend on the dose administered. In low doses, cardiac stimulation and renal vascular dilation occur and in larger doses vasoconstriction occurs.
Dopamine has a plasma half-life of about 2 minutes. Predominantly renally excreted.

Dilute 800 mg in 500 ml or 400 mg in 250 ml (= 1600 µg/ml).

If given peripherally, use a large vein and a dilution of 200 mg in 50 ml (= 4 mg/ml).

Using 200 mg in 50 ml **Dopamine** solution the following infusion rates apply:

<table>
<thead>
<tr>
<th>Patient weight (kg)</th>
<th>Infusion rate (ml/hr)</th>
<th>Patient weight (kg)</th>
<th>Infusion rate (ml/hr)</th>
<th>Patient weight (kg)</th>
<th>Infusion rate (ml/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50kg</td>
<td>2.2</td>
<td>50kg</td>
<td>3.7</td>
<td>50kg</td>
<td>7.5</td>
</tr>
<tr>
<td>60kg</td>
<td>2.7</td>
<td>60kg</td>
<td>4.5</td>
<td>60kg</td>
<td>9.0</td>
</tr>
<tr>
<td>70kg</td>
<td>3.1</td>
<td>70kg</td>
<td>5.2</td>
<td>70kg</td>
<td>10.5</td>
</tr>
<tr>
<td>80kg</td>
<td>3.6</td>
<td>80kg</td>
<td>6.0</td>
<td>80kg</td>
<td>12.0</td>
</tr>
<tr>
<td>90kg</td>
<td>4.0</td>
<td>90kg</td>
<td>6.7</td>
<td>90kg</td>
<td>13.5</td>
</tr>
<tr>
<td>100kg</td>
<td>4.5</td>
<td>100kg</td>
<td>7.5</td>
<td>100kg</td>
<td>15.0</td>
</tr>
<tr>
<td>110kg</td>
<td>4.9</td>
<td>110kg</td>
<td>8.2</td>
<td>110kg</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Dobutamine can be administered as a dilution of 250 mg in 50 ml (= 5 mg/ml).

Using 250 mg in 50 ml **dobutamine** solution the following infusion rates apply:

<table>
<thead>
<tr>
<th>Dose (µg/kg/min)</th>
<th>Patient’s body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 kg</td>
</tr>
<tr>
<td>2.5</td>
<td>1.2 ml/hr</td>
</tr>
<tr>
<td>5</td>
<td>2.4 ml/hr</td>
</tr>
<tr>
<td>7.5</td>
<td>3.6 ml/hr</td>
</tr>
<tr>
<td>10</td>
<td>4.8 ml/hr</td>
</tr>
<tr>
<td>15</td>
<td>7.3 ml/hr</td>
</tr>
</tbody>
</table>
CARDIOVASCULAR MEDICATIONS AND PREGNANCY

Central Illustration: Cardiovascular Medications in Pregnancy

Arrhythmias
- Adenosine
- Metoprolol/propranolol
- Digoxin
- Lidocaine
- Verapamil
- Diltiazem
- Procardiamide
- Sotalol
- Flecainide
- Propafenone
- Amiodarone

Hypertension
- Labetalol
- Nifedipine
- Alpha-methyldopa (oral)
- Hydralazine
- Nitroglycerin
- Nitroprusside
- Isosorbide dinitrate
- Amlodipine
- Furosemide
- Hydorchlorothiazide
- Clonidine

Heart Failure
- Metoprolol
- Carvedilol
- Furosemide
- Benemidite
- Dopamine
- Dobutamine
- Norepinephrine
- Hydralazine
- Nitroglycerin
- Isosorbide dinitrate
- Torsemide
- Metolazone

Pulmonary Hypertension
- Iloprost
- Epoprostenol
- Slidixel
- Treprostinil

Contraindicated in Pregnancy
- Atenolol
- ACE-I class
- ARB class
- Aldosterone antagonists
- Statin class
- DDACs
- ERAs (e.g., brosantan)

Anticoagulants/Antiplatelets/Thrombolytics
- Warfarin
- Unfractionated Heparin
- Enoxaparin
- Fondaparinux
- Argatroban
- Bivalirudin
- Antiplatelets
- Aspirin (low dose)
- Clopidogrel
- Prasugrel
- Ticagrelor
- Thrombolytics
- Alteplase
- Streptokinase

Safety in pregnancy
- FDA category
- Safety in lactation
- Used also for fetal treatment

- Considered safe
- Limited data/to be used with caution
- Contraindicated
- Conflicting data/unknown

<table>
<thead>
<tr>
<th></th>
<th>Adrenaline</th>
<th>Amiodarone</th>
<th>Digoxin</th>
<th>Dobutamine</th>
<th>Dopamine</th>
<th>Furosemide</th>
<th>GTN</th>
<th>Heparin</th>
<th>Insulin</th>
<th>Isoprenaline</th>
<th>Lidocaine</th>
<th>Magnesium</th>
<th>Midazolam</th>
<th>Morphine</th>
<th>KCl</th>
<th>Nitroprusside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dobutamine</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>?</td>
<td>C</td>
<td>R</td>
<td>I</td>
<td>C</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine</td>
<td>?</td>
<td>G</td>
<td>R</td>
<td>C</td>
<td>I</td>
<td>?</td>
<td>C</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furosemide</td>
<td>I</td>
<td>I</td>
<td>C</td>
<td>I</td>
<td>I</td>
<td>?</td>
<td>C</td>
<td>C</td>
<td>?</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>C</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Heparin</td>
<td>?</td>
<td>I</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>I</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>incompatible</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>compatible in saline and glucose</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>compatible with glucose only</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>compatible in saline only</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>compatibility is conditional, consult pharmacy</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>no information available</td>
<td></td>
</tr>
</tbody>
</table>